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• A global sequence-alignment method aligns and compares two sequences along their entire length, and comes 

up with the best alignment that displays the maximum number of nucleotides or amino acids aligned. 

• The algorithm that drives global alignment is the Needleman-Wunsch algorithm.  

• A global alignment algorithm starts at the beginning of two sequences and adds gaps to each until the end of 

one is reached.  

• Global alignment works the best when the sequences are similar in character and length. 

• Because global alignment displays the best alignment between two sequences using the entire sequence, it 

may miss a small region of biological importance. 

• Two of the available web servers for pairwise global alignment are EMBL-EBI EMBOSS (http://www.ebi 

.ac.uk/Tools/psa/), and NCBI specialized BLAST  
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• Local sequence alignment is intended to find the 

most similar regions in two sequences being 

aligned. The algorithm that drives local alignment is 

the SmithWaterman algorithm. 

• A local alignment algorithm finds the region of 

highest similarity between two sequences and builds 

the alignment outward from this region.  

• If there are multiple regions of very high similarity, 

the same principle applies.  

• Obviously, local alignment is useful for sequences 

that are not similar in character and length, yet are 

suspected to contain small regions of similarity, such 

as biologically important motifs. 



• Both these algorithms are examples of dynamic programming. 

• An algorithm is a step-by-step procedure that utilizes a finite number of instructions for automated 

reasoning and the calculation of a function. 

• Dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems. 

• In the case of sequence alignment, dynamic programming involves setting up a two-dimensional matrix in which 

one sequence is listed vertically and the other sequence is listed horizontally; then calculating the scores, one row 

at a time.  

• A 100% perfect alignment will produce a diagonal straight line (with a negative slope) spanning from the top left to 

bottom right. 

• If the alignment is not perfect, gaps are introduced in the matrix.  

• For the sequence represented horizontally, gaps are introduced vertically,  

• and for the sequence represented vertically, gaps are introduced horizontally,  

• and the alignment is determined by a traceback step. 









• In both global and local alignment, the final output is given an alignment score.  

• Gaps have to be introduced to improve the alignment. The reason gaps are introduced is because one of 

the sequences may have gained or lost sequence characteristics (insertion-deletion) during evolution that 

did not happen with the other sequence.  

• However, the number of gaps is kept to a minimum to keep the alignment meaningful; otherwise an 

artificially high alignment score can be obtained even when the two sequences are not related. 

• The gap penalty value is subtracted from the gross alignment score to obtain the final alignment score 

• The insertion of no more than 1 gap per 20 amino acid residues is ideal but that is not possible in most 

cases. 

• For each gap opened, a gap-opening penalty value is assigned, and for each gap extended, a gap-

extension penalty value is assigned. 

• A gap-opening penalty is always much higher than a gap-extension penalty. Often, a default value of 210 

for a gap-opening penalty and 21 for a gap-extension penalty are used. 
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• For both nucleic acids and proteins, the 

alignment score is calculated using a scoring 

matrix.  

• A scoring matrix is a set of values representing 

the likelihood of one residue being substituted by 

another during sequence divergence through 

evolution.  

• This is why the scoring matrix is also known as 

the substitution matrix. 

 



• A scoring matrix for comparing DNA sequences can be simple 

because there are only four nucleotides and the mutation 

frequencies are assumed to be equal (the Jukes and Cantor 

assumption).  

• A high positive score (e.g. 5) is assigned for a match and a low 

negative score (e.g. 24) for a mismatch, thus creating a simple 

model. 

• However, the frequency of transition mutations (purine 

replaced by purine or pyrimidine replaced by pyrimidine) is 

higher than transversion mutations (purine replaced by 

pyrimidine or vice versa): Kimura and others 





• Scoring matrices for amino-acid substitutions are more 

complex, reflecting the similarity of physicochemical 

properties, as well as the likelihood of one amino acid being 

substituted by another at a particular position in 

homologous proteins.  

• The scoring matrices for proteins are 20 X 20 matrices.  

• Two well-known types of scoring matrices for proteins are 

PAM and BLOSUM. 



PAM Matrices 

• PAM (point accepted mutation—that is, accepted point mutation—also called percent 

accepted mutation) matrices were first developed by Margaret Dayhoff and colleagues 

in 1978 and hence are also known as Dayhoff PAM matrices.  

• A PAM represents a substitution of one amino acid by another that has been fixed by 

natural selection because either it does not alter the protein function or it is beneficial 

to the organism. 

• In a PAM1 matrix, which is the original PAM matrix generated, a PAM unit is an 

evolutionary time over which 1% of the amino acids in a sequence are expected to 

undergo accepted mutations, resulting in 1% sequence divergence. 

• The PAM1 matrix was built by aligning closely related protein sequences (71 protein 

families) that had at least 85% sequence identity 

 



• Subsequently, in order to deal with protein sequences that are more diverged and distantly related, other 

PAM matrices, such as PAM100 and PAM250, were generated. 

• These later PAM matrices were generated by multiplying the PAM1 matrix by itself hundreds of times. 

• For example, the PAM250 matrix can be obtained by multiplying the PAM1 matrix by itself 250 times over. 

• The values in the matrix are log odds scores 



• Jones et al. updated the PAM matrix by taking into account 2621 families of 

sequences (16,000 homologous protein sequences) from the Swiss-Prot 

database.  

• The sequences were clustered at 85% identity level as was done in the original 

PAM matrix, and the raw mutation frequency matrix was processed in a similar 

way as in the PAM matrix.  

• This updated PAM matrix is called the PET91 matrix (1991).  

• Thus, PET91 takes into account the substitutions that were poorly represented 

in the original Dayhoff matrix.  

• The overall character of PAM and PET91 matrices is similar. 



BLOSUM 
• BLOSUM (blocks substitution matrices) scoring matrices were proposed by 

Steven Henikoff and Jorja Henikoff in 1992. 

• BLOSUM represents an alternative set of scoring matrices, which are widely 

used in sequence alignment algorithms.  

• Like PAM, BLOSUM matrices are also log-odds matrices.  

• BLOSUM matrices were developed based on multiple alignment of 500 

groups of related protein sequences, which yielded. 

• 2000 blocks of conserved amino-acid patterns.  

• Blocks are ungapped multiple sequence alignments corresponding to the 

most conserved regions of the proteins involved 



• In each multiple alignment, the sequences showing similar % identity were clustered into groups and 

averaged. Using these groups, the substitution frequencies for all pairs of amino acids were calculated 

and the matrix was developed.  

• Therefore, the blocks of ungapped multiple sequence alignments, which are the cornerstone of 

BLOSUM matrices, reveal the evolutionary relationship between proteins.  

• BLOCKS database was developed to host these multiple sequence alignments that reveal the blocks.  

• By 1996, there were B3000 blocks reported, based on 770 protein families. 
• Different BLOSUM matrices differ in the % sequence identity used in clustering 



• BLOSUM62 is useful for aligning and scoring proteins 

that show less than 62% identity. 

• Henikoff and Henikoff tested the performance of 

hierarchical multiple alignment of three serine proteases 

using BLOSUM45, BLOSUM62, BLOSUM80,PAM120, 

PAM160, and PAM250 matrices.  

• All BLOSUM matrices performed better than PAM 
matrices; 



To summarize, PAM and BLOSUM matrices can be 

compared as follows: 

1. PAM matrices are constructed based on an evolutionary model—that is, from the estimation of 

mutation rates through constructing phylogenetic trees and inferring the ancestral sequence—
but BLOSUM matrices are constructed based on direct observation of ungapped multiple 

alignment-driven sequence relationships.  

2. Thus, PAM matrices are often used for reconstructing phylogenetic trees, whereas BLOSUM 

matrices are suitable for local sequence alignments. 

3. PAM matrix construction involves global alignment of the full-length sequences consisting of 

both conserved and diverged regions, but BLOSUM matrix construction involves local sequence 

alignment of conserved sequence blocks. 

4. Additionally, when Henikoff and Henikoff compared the two equivalent matrices PAM160 and 

BLOSUM62, they found that BLOSUM62 is less tolerant to hydrophilic-amino-acid substitution, 

but more tolerant to hydrophobic-amino-acid substitution than PAM160. Also, for rare amino 

acids, such as cysteine and tryptophan, BLOSUM62 is typically more tolerant to mismatches 
than PAM160. 


