

Sequences producing significant alignments:

Select: All None Selected:0

AT AT	Alignments Download - GenPept Graphics Distance tree of results Multiple alignment						٥
	Description	Max score		Query cover	E value	Ident	Accession
	lactase [Homo sapiens]	4011	4011	100%	0.0	99%	EAX11622.1
	lactase-phlorizin hydrolase preproprotein [Homo sapiens]	4011	4011	100%	0.0	100%	NP 002290.2
	lactase phlorizinhydrolase [Homo sapiens]	4009	4009	100%	0.0	99%	AAA59504.1
	unnamed protein product [Homo sapiens]	4009	4009	100%	0.0	99%	CAA30801.1
	PREDICTED: lactase-phlorizin hydrolase [Pan paniscus]	3969	3969	100%	0.0	99%	XP 003822858.1
	PREDICTED: lactase-phlorizin hydrolase [Nomascus leucogenys]	3930	3930	100%	0.0	98%	XP 003267652.1
0	PREDICTED: lactase-phlorizin hydrolase [Gorilla gorilla]	3891	3891	100%	0.0	96%	XP 004032645.1
	PREDICTED: LOW QUALITY PROTEIN: lactase-phlorizin hydrolase [Pongo abelii]	3886	3886	100%	0.0	97%	XP 002812489.1
	PREDICTED: lactase-phlorizin hydrolase [Macaca fascicularis]	3835	3835	100%	0.0	96%	XP 005573098.1
	hypothetical protein EGK_05718 [Macaca mulatta]	3834	3834	100%	0.0	96%	EHH22449.1
	PREDICTED: lactase-phlorizin hydrolase [Macaca mulatta]	3833	3833	100%	0.0	96%	XP_014965495.1
	PREDICTED: lactase-phlorizin hydrolase [Papio anubis]	3833	3833	100%	0.0	96%	XP_003909221.1
	PREDICTED: lactase-phlorizin hydrolase [Macaca nemestrina]	3832	3832	100%	0.0	96%	XP 011758105.1
0	hypothetical protein EGM_05165 [Macaca fascicularis]	3829	3829	100%	0.0	96%	EHH55875.1
0	PREDICTED: lactase-phlorizin hydrolase [Chlorocebus sabaeus]	3828	3828	100%	0.0	96%	XP 007963046.1
	PREDICTED: lactase-phlorizin hydrolase [Mandrillus leucophaeus]	3825	3825	100%	0.0	96%	XP 011825664.1
	PREDICTED: lactase-phlorizin hydrolase [Rhinopithecus roxellana]	3823	3823	100%	0.0	95%	XP 010365578.1
0	PREDICTED: lactase-phlorizin hydrolase [Cercocebus atys]	3821	3821	100%	0.0	96%	XP_011925242.1
	PREDICTED: lactase-phlorizin hydrolase [Callithrix jacchus]	3741	3741	100%	0.0	93%	XP 002749525.1
	PREDICTED: lactase-phlorizin hydrolase [Saimiri boliviensis boliviensis]	3723	3723	100%	0.0	93%	XP_003922057.1
	PREDICTED: lactase-phlorizin hydrolase [Aotus nancymaae]	3682	3682	100%	0.0	92%	XP_012332156.1
	PREDICTED: lactase-phlorizin hydrolase [Colobus angolensis palliatus]	3547	3547	100%	0.0	90%	XP_011793136.1
	PREDICTED: LOW QUALITY PROTEIN: lactase-phlorizin hydrolase [Pan troglodytes]	3491	3694	95%	0.0	98%	XP 009441718.1
		SUME	2121	1.2221	22.2		

□ Download →	GenBank	Graphics	Sort by:	E value	(\$)

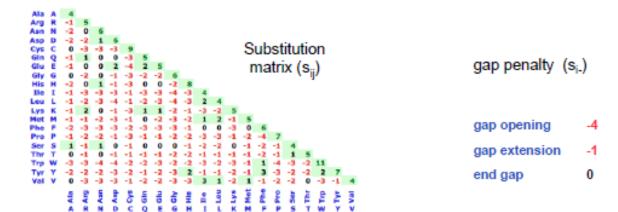
Home is protein phosphatase 3, catalytic subunit, alpha isozyme (PPP3CA), transcript v

ange 1	ange 1888 to 4520: GenBank Graphics V Next Match A Previous Match				
Score 1863 b		Expect 0.0	Identities 2633/2633(100%)	Gaps 0/2633(0%)	Strand Plus/Plus
ery	2044	GCTATCAAAGGAT	TTTCACCACAACATAAGAT	CACTAGCTTCGAGGAA	GCCAAGGGCTTA
ojct	1888	GCTATCAAAGGAT	TTTCACCACAACATAAGAT	CACTAGCTTCGAGGAA	GCCAAGGGCTTA
uery	2104	GACCGAATTAATC	AGAGGATGCCGCCTCGCAG	AGATGCCATGCCCTCT	GACGCCAACCTT
bjct	1948	GACCGAATTAATC	GAGAGGATGCCGCCTCGCAG	AGATGCCATGCCCTCT	GACGCCAACCTT
uery	2164	AACTCCATCAACA	AGGCTCTCACCTCAGAGAC	TAACGGCACGGACAGC	AATGGCAGTAAT
bjct	2008	AACTCCATCAACA	AGGCTCTCACCTCAGAGAC	TAACGGCACGGACAGC	AATGGCAGTAAT
uery	2224	AGCAGCAATATTC	AGTGACCACTTCCTGTTCA	Ctttttttttttt	tttttttttt
bjct	2068	AGCAGCAATATTC	AGTGACCACTTCCTGTTCA		
uery	2284	ttGAGCTGCGGGG	CATGATGGGGGATTGCTGCA	TATCAGCAGTTGGATG	TTCTTGCCTCTG
bjct	2128	TTGAGCTGCGGGG		 TATCAGCAGTTGGATG	TTCTTGCCTCTG

- The calculation of alignment scores involves addition of the match/mismatch values from the matrix for every nucleotide base or amino acid residue involved in the alignment to obtain a gross alignment score.
- Then the total gap penalty is calculated.
- The total gap penalty value is subtracted from the gross alignment score value to obtain the final alignment score.

- The statistical significance of the raw score, S, of an alignment is assessed to determine whether the observed alignment is specific or could be the result of random chance.
- This is done by creating many random sequences of the same length from one of the two aligned sequences by shuffling the sequence and running the alignment again.
- Typically this reshuffling and realignment process is repeated 200 times or more.
- Each alignment using these random sequences produces an alignment score (s).
- These scores (s1. . .sn) are plotted to generate a distribution pattern, a threshold of significance is set, and the original score (S) is compared against this distribution.
- If the S is located at one end of the distribution (extreme value distribution) that means that the alignment is not likely to be produced by random chance.

Score, Bit-score, P-value, E-value


Score: A number used to assess the biological relevance of a finding.

In the context of sequence alignments, a score is a numerical value that describes the overall quality of an alignment. Higher numbers correspond to higher similarity. The score scale depends on the scoring system used (substitution matrix, gap penalty).

$$S = \sum_{i=1}^{L} S_{r_{1,i} r_{2,i}}$$

Example:

```
R L A S V - E T D M W T P L T L R Q H
. | . | : : | . : | . . |
T L T S L A Q T T L - - K A H L G T H
-1 +4 +0 +4 +1 -4 +2 +5 -1 +2 -4 -1 -1 -1 -2 +4 -2 -1 +8 = 12
```


Z-Score

- In the statistical sense, Z is the distance between S and the mean of scores obtained using randomized sequences.
- The Z-score is calculated by repeating the reshuffling and realignment process, as described above, and noting the raw score (s) of each alignment using the randomized sequences (s₁...s_n).
- The mean (x) and the standard deviation (σ) of s₁...s_n are calculated and from these the Z-score of the target alignment can be determined.
- The calculation of the Z-score assumes that the alignment of the shuffled random sequences shows a normal distribution.

interpretation of the Z-score is as follows:

- Z>20: two sequences are definitely homologous (Family)
- Z between 10 and 20: two sequences most likely homologous (Family/Superfamily)
- Z between 6 and 8: two sequences are less likely to be homologous
- Z<6: not significant.

P-Value

- The P-value of an alignment represents the probability of obtaining a score≥S by chance.
- For example, if the P-value is 10⁵, it means that the probability of obtaining an alignment with a score≥S is 1 out of 10⁵.
- Thus, different alignments can be compared based on their P-values.
- The P-value ranges from 0 to 1; the closer it is to 0, the better is the alignment.

E-Value

- The E-value is the expectation value that indicates the number of alignments with a score≥S that one can expect to find by chance in a database of size N.
- Hence, the E-value is dependent on the database size and the query length.
- The closer the E-value to 0, the better is the alignment.
- The E-value is the most widely used measure for estimating the quality of sequence alignment—that is, the extent of sequence similarity.
- The typical threshold for the E-value when judging homology, particularly using BLAST, is E≤1e-5, and the lower the value, the better it is.
- lowering the default value makes the search more stringent and fewer chance matches are reported.

P-value: Probability that an event occurs by chance.

In the context of sequence alignments, the **P-value** associated to a score S is the probability to obtain by chance a score x at least equal to S:

$$P$$
-val $(S) = P(x \ge S)$

$$Pval_S^{MSP} = Ke^{-\lambda S}$$

$$= Ke^{-\ln(2)S' + \ln(K)}$$

$$= 2^{-S'}$$

This equation was derived from the EVD score distribution obtained from all pair alignments (see course).

E-value (Expectation value): correction of the *p-value* for multiple testing.

In the context of database searches, the *E-value* (associated to a score S) is the number of distinct alignments, with a score equivalent to or better than S, that are expected to occur in a database search by chance. The lower the E value, the more significant the score is.

$$E = mn \cdot Pval$$

$$= Kmne^{-\lambda S}$$

$$= NKe^{-\lambda S}$$

$$= N/2^{S}$$

E-val (S) = P-val (S) * N where N is the size of the search space (N = n*m where n is the length of the query sequence and m is the length of the database).

Bit Score

- The bit score (S₀) is a normalized raw score expressed in bits; it is an estimate of the search space one has to search through—that is, the number of sequence pairs one has to score—before one can come across a raw alignment score≥S, by chance.
- It should be emphasized that the bit score is dependent on sequence length, and short sequences may not produce high bit scores despite very high identity.
- To summarize the utility of the statistical estimates of sequence alignment in simple terms, the better the alignment (e.g. homologous sequences),
- the lower the P- and E-values,
- and the higher the Z- and bit scores.

Bit-score: A log-scaled version of a score.

In the context of sequence alignments (BLAST), the **bit-score S'** is a normalized score expressed in *bits* that lets you estimate the magnitude of the *search space* you would have to look through before you would expect to find an score as good as or better than this one by chance. Althshul proposes to following definition:

$$S' = \frac{\lambda S - \ln(K)}{\ln(2)}$$

S is the raw score. Parameters λ and K depend on the substitution matrix and on the gap penalties (Altchul).

Ex: If the bit-score is 30, you would have to score, on average, about 2³⁰ = 1 billion independent segment pairs to find a score this score by chance. Each additional bit doubles the size of the search space.

The bit-scores is thus a rescaled version of the raw alignment score that is *independent of the* size of the search space.

The **size of the search space** is proportional to the product of the query sequence length (n) * the sum of the lengths of the sequences in the database (m): N=n*m. The size of the search space is then obtained by multiplying N by a coefficient K (Altschul).

Ex: When searching protein databases with protein queries, K is about 0.13. Thus, for a protein of length n=235 aa which is searched against a database of size m=12 496 420 aa, the size of the search space is equal to 0.13 * 235 * 12 496 420 = about 0.38 billion. In this case, a bit score of 30 (which corresponds to a space of 2^{30} = 1 billion) may have occurred by chance alone.

- BLAST E-Value Cut-Off
- For nucleic-acid-based search, the suggested threshold (minimum significant hit) for the E-value is ≤1e-6 and a sequence identity of ≥70%.
- For protein-based search, the suggested threshold for the E-value ≤ 1e-4, with a sequence identity of ≥ 35%. However, typically for protein-based homology search, the threshold used is E ≤ 1e-5, and the lower it is, the better. For example, an E-value of 1e-25 will indicate a clear homology.

- To summarize the utility of the statistical estimates of sequence alignment in simple terms, the better the alignment (e.g. homologous sequences),
- the lower the P- and E-values,
- and the higher the Z- and bit scores.

