Department of Data Science (PG)

Programme Specific Outcomes (PSOs)

On the successful completion of the Postgraduate programme, the students will be able to

PSO1	apply advanced theoretical concepts, analytical frameworks, and
Disciplinary	methodologies in data science to encourage deep and nuanced
Knowledge	comprehension essential for scholarly and professional endeavors.
PSO2	nurture collaborative environments and enhance professional relationships
Communication	in various academic and professional contexts through proficient verbal,
Skills	written, and non-verbal communication skills.
PSO 3	apply problem-solving methodologies and analytical reasoning to address
Problem Solving &	complex challenges in data science across diverse contexts. Demonstrate
Analytical Reasoning	the capacity to effectively analyze information, identify innovative
	solutions, and make decisions contributing effectively in the field of data
	science.
PSO 4	exhibit advanced critical thinking skills by effectively analyzing complex
Critical Thinking	problems, synthesizing diverse information, and generating innovative
	solutions in data science
PSO 5	contribute to advancing knowledge in the field of data science through
Research Skills	critical thinking, scholarly integrity, and innovative research.
PSO 6	excel in diverse professional environments through proficient use of digital
Digital Literacy	tools and technologies.
PSO 7	navigate dynamic professional environments and achieve organizational
Professional	goals through innovative thinking and collaboration in data science
competencies	projects
PSO 8	integrate ethical principles into professional practice and foster integrity,
Moral and Ethical	accountability, and responsible decision-making.
Awareness/Reasoning	
PSO 9	communicate, collaborate, and lead effectively in multicultural
Multicultural	environments in data science projects, embracing the richness of cultural
Competence	diversity.
PSO 10	continuously assess learning needs, expand expertise, and adapt to
Self-directed &	complex and dynamic data science contexts, fostering a commitment to
Lifelong Learning	lifelong learning and growth.

Department of Data Science (PG)

Learning Outcome - Based Curriculum Framework (LOCF)

(w.e.f 2024-2025)

Sem	Category	Course Code	Course Title	Hours/	Credits	Marks
				Wk.		
1	CC	24PDS4401	Python Programming	6	4	80
1	CC	24PDS4403	Fundamentals of Data Science	5	4	80
1	CC	24PDS4405	Mathematics for Data Science	5	4	80
1	CC	24PDS4407	Python Programming – Lab	5	4	80
1	DSE	24XXXNNNN	Discipline Specific Elective - I	5	4	80
1	GE	24XXXNNNN	Generic Elective – I	4	3	60
	Total			30	23	460
2	CC	24PDS4402	Big Data Analytics	6	4	80
2	CC	24PDS4404	Artificial Intelligence	5	4	80
2	CC	24PDS4406	Statistics – I	5	4	80
2	CC	24PDS4408	Big Data Analytics - Lab	5	4	80
2	DSE	24XXXNNNN	Discipline Specific Elective -II	5	4	80
2	GE	24XXXNNNN	Generic Elective – II	4	3	60
	Total			30	23	460
3	CC	24PDS5401	Machine Learning	5	4	80
3	CC	24PDS5403	Machine Learning – Lab	5	4	80
3	CC	24PDS5405	Databases for Data Science	5	4	80
			(TcL)			
3	CC	24PDS5407	Statistics – II	5	4	80
3	CC	24PDS5409	Data Mining & Warehousing	5	4	80
3	DSE	24XXXNNNN	Discipline Specific Elective-III	5	3	60
3	IS	24XXX5233	Internship*	-	2	40
	Total			30	25	500
4	CC	24PDS5402	Data Visualization(TcL)	5	4	80
4	CC	24PDS5404	Cloud Computing	5	4	80
4	CC	24PDS5406	Deep Learning	5	4	80
4	CC	24PDS5302	Deep Learning - Lab	4	3	60
4	CC	24PDS5502	Project	6	5	100
4	DSE	24XXXNNNN	Discipline Specific Elective-IV	5	3	60
4	SEC	24XXX5244	Professional Competency Skill	-	2	40
	Total			30	25	500
Gran	d Total			120	96	1920

* Internship - First Year Vacation (30 Hrs.)

Part III

Sem	Part	Course Code	Course Title	Hours	Credits	Marks
				/Wk.		
1	III	24PDS4409	Internet of Things (TcL)	5	4	80
		24PDS4411	Data structures and Algorithms (TcL)			
2	III	24PDS4410	Software Engineering for Data	5	4	80
			Science			
		24PDS4412	Information Security & Ethics			
3	III	24PDS5301	Natural Language Processing (TcL)	5	3	60
		24PDS5303	Reinforcement Learning (TcL)			
4	III	24PDS5304	Web Analytics	5	3	60
		24PDS5306	Social Media Analytics			

Discipline Specific Elective (DSE)

Generic Elective (GE)

Sem	Part	Course Code	Course Title	Hour	Credits	Marks
				s/Wk.		
1	III	24PDS4301	Data Analytics using Excel (TcL)	4	3	60
		24PDS4303	Web Programming (TcL)			
2	III	24PDS4302	Data Analysis using Tableau (TcL)	4	3	60
		24PDS4304	Multimedia Analytics (TcL)			

Mapping with POs

PDS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
120	3	3	3	2	2	2	2	1	1	1

Mapping of Courses with PSOs

Courses	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
24PDS4401	3	2	2	2	2	2	2	1	1	1
24PDS4403	3	3	2	2	2	2	1	1	1	1
24PDS4405	3	3	3	3	3	2	2	2	2	2
24PDS4407	3	2	2	2	2	2	1	1	1	1
24PDS4409/										
24PDS4411	3	3	3	2	2	2	2	1	1	1
24PDS4402	3	3	3	2	2	2	1	1	1	1
24PDS4404	3	3	3	2	2	2	2	2	1	1
24PDS4406	3	3	3	3	3	2	2	2	2	2
24PDS4408	3	2	2	2	2	2	1	1	1	1
24PDS4410/	3	3	3	2	2	2	2	1	1	1
24PDS4412										
24PDS5401	3	3	2	2	2	2	2	1	1	1
24PDS5403	3	3	3	2	2	2	2	1	1	1
24PDS5405	3	3	3	2	2	2	1	1	1	1
24PDS5407	3	3	3	3	2	2	2	2	2	2
24PDS5409	3	3	3	3	2	2	1	1	1	1
24PDS5301/										
24PDS5303	3	3	3	3	2	2	2	2	1	1
24PDS5233	3	3	3	3	3	3	2	2	1	1
24PDS5402	3	3	3	3	2	2	2	1	1	1
24PDS5404	3	3	3	3	2	2	2	2	1	1
24PDS5406	3	3	3	3	2	2	2	2	1	1
24PDS5302	3	2	2	2	2	2	1	1	1	1
24PDS5502	3	3	3	3	3	3	2	2	1	1
24PDS5304/										
24PDS5306	3	3	3	3	2	2	2	1	1	1
24PDS5244	3	3	3	3	3	3	2	2	1	1
Average	2.9	2.8	2.7	2.5	2.2	2.1	1.7	1.4	1.1	1.1

Mapping of Courses with POs

Courses	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
24PDS4301/										
24PDS4303	3	3	3	2	2	2	2	1	1	1
24PDS4302/										
24PDS4304	3	3	2	2	2	2	2	1	1	1
Average	3	3	2.5	2	2	2	2	1	1	1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4401	Python programming	Core	6	4

To be able to think logically and develop interactive programs using the python constructs functions, data structures, classes and objects, files.

Course Outcomes

At the end of the course, students will be able to

CO1: to assess the fundamentals of Python and Mathematical Functions

CO2: design the basic concepts of Python Strings and Functions

CO3: formulate the fundamental Classes, Objects and GUI techniques

CO4: support to generate the information on List and File handling

CO5: to examine Tuple, dictionary and Database concepts

UNIT-I

18 Hours

Introduction - Computer and its components - Programming Languages - Operating Systems -The history of Python - Introduction to python programming - Programming Style and Documentation - Programming Errors - Introduction to Graphics Programming**Elementary Programming** - Input - Output - Identifiers - Variables, Assignment Statements and Expressions - Numeric Data Types and Operators - Evaluating Expressions and Operator Precedence - Type Conversion - Different forms of if statements.**Mathematical Functions** - Introduction - Common Python Functions – Mathematical functions.

UNIT-II

Loops - Introduction - while, for, Nested Loops - break and Continue **Functions** - Introduction - Defining and calling a function - Return single and multiple values - Positional, Keyword and Default Arguments - Passing Arguments by Reference Values - Modularizing Code – Function **Strings:** Strings: A string is a sequence, Getting the length of a string using len, Traversal through a string with a loop, String slices, Strings are immutable, Searching, Looping and counting, The in operator, String comparison, String methods, Format operator

UNIT-III

Objects and Classes - Introduction - Defining Classes for Objects - Immutable vs Mutable Objects - Hiding Data Fields - Class Abstraction and Encapsulation **Inheritance and Polymorphism** - Super classes and Subclasses - Overriding methods - Operator Overloading -Object class. **GUI** - Buttons and Callbacks, Canvas Widgets, Coordinate Sequence, More Widgets, Packing Widgets, Menus and Callbacks, Binding

18 Hours

UNIT-IV

Lists - Basics - Copying Lists - Passing Lists to Functions - Returning a List from a Function -Searching, Sorting Lists - List Comprehension, List arguments, Passing List to a function, List Processing.Files and Exception Handling – Files: Persistence, Opening files, Reading and Writing files, Format Operator, File names and Paths, Searching through a file, Letting the user choose the file name -Retrieving Data from Web - Exception Handling - Raising Exceptions.

UNIT-V

18 Hours

18 Hours

Tuples, Sets and Dictionaries – Introduction - Tuples - Sets - Comparing the Performance of Sets and Lists – Dictionaries, **Python's Database Connectivity** - Types of Databases Used with Python, Working with MySQL Database, Using MySQL from Python, Retrieving All Rows from a Table, Inserting Rows into a Table, Deleting Rows from a Table, Updating Rows in a Table, Creating Database Tables through Python

Learning Resources

Text Books

1.Y. Daniel Lang, Introduction to Programming using Python, 2nd Edition, Pearson Education Inc., 2013.

Reference Books

1. Allen B. Downey. Think Python. How to Think Like a Computer Scientist, 2nd Edition, O 'Reilly Publishers, 2016.

2. Corey Wade, et al: The Python Workshop, 2nd Edition, Packt, 2022.

David Beazley, Brian K. Jones. Python Cookbook: Recipes for Mastering Python 3, 3rd Edition,
2013 Harsh Bhasin. Python for Beginners. New Age International Publishers, 2018.

4.Martin C. Brown. Python: The Complete Reference. McGraw Hill Education; Fourth Edition, 2018.

Websites

1.https://realpython.com, http://docs.python.org, http://diveintopython.org/,

2.https://www.w3schools.com/python/,

3. https://www.tutorialspoint.com/python/index.html

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	2	2	2	2	1	1	1	1
CO2	3	2	2	2	2	2	2	1	1	1
CO3	3	3	3	2	2	1	1	1	1	1
CO4	3	2	2	2	2	2	2	1	1	1
CO5	3	3	2	2	1	1	2	1	1	1
Average	3	2.4	2.2	2	1.8	1.6	1.6	1	1	1

CO – PSO Mapping

Strong -3 Medium -2 Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4403	Fundamentals of data science	Core	5	4

The course on foundations of data science provides students with a comprehensive understanding of the fundamental principles and techniques used in analyzing and interpreting data. Students gain practical skills and theoretical knowledge essential for exploring and extracting valuable insights from complex data sets.

Course Outcomes:

At the end of the course, students will be able to

CO 1: formulate the types of data and analytics, data science process, and its life cycle.

CO 2: design math in data science

CO 3: examine the various data intensive operations and tools

CO 4: assess the tools and methods for analyzing the data

CO 5: examine the recent potential applications and development of data science with realtime case studies

UNIT-I

Introduction of data science: Data Science – Data science Venn diagram - Basic terminology – Types of data – levels of data- Types of data analytics - Descriptive analytics-Diagnostic analytics- Predictive analytics- Prescriptive analytics

UNIT-II

Mathematical preliminaries: Basic Maths – basic symbols and terminology-Linear Algebra Basic Probability – definitions- probability – compound events – conditional probability

UNIT-III

Data mining and data warehousing: Introduction to Data warehousing – Design consideration of data warehouse - Data loading process– Data mining – Data mining techniques – Tools and platforms – case study

UNIT-IV

Visualizing data: Exploratory Data Analysis – Developing the visual aesthetic – chart types – Greatvisualizations – Reading graphs – Interactive visualizations

UNIT-V

Data science – recent trends : Applications of Data Science, recent trends in various data collection and analysis techniques, various visualization techniques.

15 Hours

15 Hours

15 Hours

15 Hours

PDS 9

Learning Resources

Text Books

- 1. Ozdemir, Sinan. Principles of data science. Packt Publishing Ltd, 2016.
- (Unit 1- Chapter 1,2,3 Unit 2.1 Chapter 4, Unit 2.2 Chapter 5)
- 2. Maheshwari, Anil. "Data analytics made accessible." Seattle: Amazon Digital Services,
- 2nd edition (2023)(Unit 3 Chapter 3 and 4)
- 3. Skiena, Steven S. The data science design manual. Springer, 2017.

(Unit 4- chapter 6)

Reference Books

- 1. Hadrien Jean.Education, C. (2023). Data Science. Certybox Education.
- 2. Pierson, Lillian. Data science for dummies. John Wiley & Sons, 2021.
- 3. Grus, Joel. Data science from scratch: first principles with python. O'Reilly Media, 2019.
- 4. Blum, Avrim, John Hopcroft, and Ravindran Kannan. Foundations of data science.

Cambridge University Press, 2020.

Websites

1 .https://www.analyticsvidhya.com/

2.https://www.simplilearn.com

3.https://www.ibm.com/in-en/topics/data-science

4. https://www.mygreatlearning.com/blog/what-is-data-science/

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	1	1
CO2	3	2	2	2	2	2	1	1	1	1
CO3	3	3	3	3	2	1	1	2	1	1
CO4	3	2	2	2	2	2	1	1	2	1
CO5	3	3	2	2	2	1	2	1	1	1
Average	3	2.6	2.4	2.2	2	1.6	1.4	1.2	1.2	1

CO – PSO Mapping

Strong -3 Medium -2 Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4405	Mathematics for Data Science	Core	5	4

This course aims to learn the concept in building the mathematical background necessary to understand and implement in data science practical/research work.

Course Outcomes:

On the successful completion of the course, Students will be able to

- **CO1:** demonstrate understanding of basic mathematical concepts in data science, relating to linear algebra.
- **CO2:** describe properties of linear systems using vectors, perform and interpret matrix Operations.
- **CO3:** describe and compute orthogonality and determinants.
- **CO4:** solve linear differential equations.

CO5: understand and apply the concept of linear transformations.

UNIT-I

Matrices and Solving Linear Equations Ax = b:Matrices and Their Column Spaces-Matrix Multiplication AB and CR-Elimination and Back Substitution-Elimination Matrices and Inverse Matrices-Matrix Computations and A = LU

UNIT-II

Vectors Spaces: Vectors and Linear Combinations-Lengths and Angles from Dot Products-Vector Spaces and Subspaces-Computing the Nullspace by Elimination: A = CR-The Complete Solution to Ax = b-Independence, Basis, and Dimension-Dimensions of the Four Subspaces

UNIT-III

Orthogonality and Determinants : Orthogonality of Vectors and Subspaces-Projections onto Lines and Subspaces-Least Squares Approximations - 3 by 3 Determinants and Cofactors-Computing and Using Determinants-Areas and Volumes by Determinants

UNIT-IV

Eigen values and Eigenvectors: Introduction to Eigen values : $Ax = \lambda x$ - Diagonalizing a Matrix-Symmetric Positive Definite Matrices-Complex Numbers and Vectors and Matrices

UNIT-V

Linear Transformations : The Idea of a Linear Transformation-The Matrix of a Linear Transformation-The Search for a Good Basis

15 Hours

15 Hours

15 Hours

15 Hours

Learning Resources

Text Book

1. Gilbert Strang, Introduction to Linear Algebra, Wellesley - Cambridge Press, Sixth Edition, 2023

Unit 1: Chapter 1: sections: 1.3, 1.4, Chapter 2: section: 2.1-2.3

Unit 2: Chapter 1: sections: 1.1, 1.2, Chapter 3: section: 3.1-3.5

Unit 3: Chapter 4: section: 4.1 - 4.3, chapter 5: section 5.1 - 5.3

Unit 4: Chapter 6: section: 6.1- 6.4

Unit 5: Chapter 8: section: 8.1 - 8.3

Reference Books

1. David Lay, Steven Lay, Judi McDonald, Linear Algebra and Its Applications 5th Edition, Pearson's

2. Sheldon Axler, Linear Algebra Done Right (Undergraduate Texts in Mathematics) 3rd ed., Springer, 2015 Edition

3. Jim Jefferson, Linear Algebra, Fourth edition

4. Jeff M Philips, Mathematical Foundations for Data Analysis

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO 1	3	3	3	3	2	2	2	3	3	2
CO 2	3	3	3	3	2	2	2	2	3	2
CO 3	3	3	3	3	2	2	2	2	2	2
CO 4	3	3	3	3	2	2	2	2	2	2
CO 5	3	3	3	3	1	2	2	2	2	2
Average	3	3	3	3	2.8	2	2	2.2	2.4	2

CO – PSO Mapping

Strong – 3 Medium - 2 Low -1

PDS	13
-----	----

15 Hours

15 Hours

15 Hours

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4407	Python programming – Lab	Core	5	4

To be able to apply appropriately the python programming knowledge gained and develop computer based solutions for a given problem

Course Outcomes:

At the end of the course, students will be able to

CO 1: Recall the components of a computer; demonstrate the appropriate use of data types, mathematical functions and strings in a program

CO 2: State the use of selection and looping constructs, compare and choose an appropriate construct for a given problem

CO 3: Develop modular programming using functions, Design program using OO constructs

CO 4: Demonstrate Strings and Lists, implement Lists and Strings appropriately, design new problems using appropriate data structures

CO 5: Demonstrate Tuples, sets, dictionaries and files, compare programs with and without files, develop applications using different data structures

UNIT-I

- 1. Installation of the required software
- 2. Programs using basic data types and operators
- 3. Programs involving Mathematical functions
- 4. Program in String Manipulations

UNIT-II

- 1. Programs using different forms of if statement
- 2. Drawing various shapes using turtle
- 3. Programs involving repeated execution of a set of statements
- 4. Programs using break and continue
- 5. Programs using random

UNIT-III

- 1. Modular programming using functions
- 2. Programs using classes and objects
- 3. Programs using Inheritance

15 Hours

- 1. Programs on Files and Exception handling
- 2. Programs using Lists and List manipulation

UNIT-V

UNIT-IV

- 1. Programs using Tuple and its methods
- 2. Programs with Set and Set manipulation
- 3. Programs using Dictionaries
- 4. Program comparing the performance of Sets and Lists

Learning Resources

Text Book

1. Y. Daniel Lang, Introduction to Programming using Python, 2nd Edition, Pearson Education Inc., 2013.

References Books

- Allen B. Downey. Think Python. How to Think Like a Computer Scientist, 2ndedition, O'Reilly Publishers, 2016.
- 2. Corey Wade, et al : The Python Workshop, 2nd Edition, Packt, 2022.
- 3. David Beazley, Brian K. Jones. Python Cookbook: Recipes for Mastering Python 3, 3rd Edition, 2013 Harsh Bhasin. Python for Beginners. New Age International Publishers, 2018.
- Martin C. Brown. Python: The Complete Reference. McGraw Hill Education; Fourth edition, 2018.

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	2	3	2	1	2	1	1
CO4	3	2	2	2	2	2	1	1	1	1
CO5	2	2	2	2	1	1	2	1	1	1
Average	2.8	2.4	2.4	2.2	2	1.8	1.4	1.2	1.2	1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4409	Internet of things	DSE	5	4

The course on the Internet of Things(IoT) explores the interconnected world of devices, sensors and systems that communicate and exchange data. This course equips students with the knowledge and skills to harness the power of IoT technologies and leverage data from connected devices to drive innovation and improve efficiency in the digital era.

Course Outcomes:

At the end of the course, students will be able to on successful completion of the course, the student will be able:

CO1: examine the concepts of IoT

CO 2: construct the essentials IOT data and framework

CO 3: categorize different types of IOT protocols

CO 4: design a basic IOT system

CO 5: examine the reliability, security and privacy of an IOT system

UNIT-I

Introduction – IoT definition and evolution – IoT Architectures - OpenIoT Architecture for IoT/Cloud Convergence - Resource Management – IoT Data Management and Analytics -Communication Protocols – Internet of Things Applications-Scheduling Process and IoT Services

UNIT-II

IoT Data and Framework Essentials - Introduction - Programming framework for IoT– The foundation of Stream processing in IoT - Continuous Logic processing system – Challenges and Future directions – Anomaly detection – Problem statement and definitions – Efficient incremental local modelling – IoT Governance.

UNIT-III

RF Protocols RFID, NFC; IEEE 802.15.4:ZigBee - ZWAVE, THREAD - Bluetooth Low Energy (BLE) - IPv6 for Low Power and Lossy Networks (6LoWPAN) - Routing Protocol for Low power and lossy networks (RPL) - CoAP - XMPP - Web Socket- AMQP - MQTT - WebRTC - PuSH Architectural Considerations in Smart Object Networking - TinyTO Protocol.

PDS 15

15 Hours

15 Hours

UNIT-IV

15 Hours

Developing Internet of Things: Introduction – IoT Design Methodology – Case study on IoT system for Weather monitoring – IoT Device - IoT physical devices and endpoints -Exemplary Device: Raspberry Pi - Linux on Raspberry Pi - Raspberry Pi interfaces – Programming Raspberry Pi and with python – Other IoT devices.

UNIT-V

15 Hours

IoT Reliability, Security and Privacy: Introduction - Concepts - IoT Security Overview – Security Frameworks for IoT – Privacy in IoT networks – IoT characteristics and reliability issues - Addressing reliability

Learning Resources

Text Books

- ArshdeepBahga, Vijay Madisetti, "Internet of Things, A Hands -on Approach", 1st Edition 2015, University Press, ISBN: 978-81-7371- 954-7
- Buyya, Rajkumar, and Amir VahidDastjerdi, eds. Internet of Things: Principles and paradigms. Elsevier, 2016.

3. Hersent, Olivier, David Boswarthick, and Omar Elloumi. The internet of things: Key applications and protocols. John Wiley & Sons, 2011.

References Books

1.Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer

2.Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.

3.Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM – MUMBAI

Websites

1.https://thingsee.com/blog/quality-hardware-list-for-your-iot-projects

2.https://tools.ietf.org/html/rfc7452. http://dret.net/lectures/iot-spring15/protocols

3.http://iot.intersog.com/blog/overview-of-iot-development-standards-and frameworks

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	1	2	1	1
CO4	3	2	3	2	2	2	1	1	1	1
CO5	2	3	2	2	1	1	2	1	1	1
Average	2.8	2.8	2.6	2.2	2	1.8	1.4	1.2	1.2	1

Strong – 3 Medium - 2 Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4411	Data structures & algorithms	DSE	5	4

The course on data structures and algorithms delves into the fundamental concepts and techniques used in organizing and manipulating data efficiently. This course equips students with essential problem – solving skills and computational thinking, enabling them to develop optimized and scalable solutions for a wide range of programming challenges.

Course Outcomes:

At the end of the course, students will be able to

CO1: setup the design of algorithms and analysis techniques

CO2: analyze the time and space complexity of algorithms

CO3: compare different data structures

CO4: measure the kinds of problems that uses the data structures and the algorithms for solving them

CO5: inspect appropriate data structures for real time applications

UNIT-I

Basic Concepts: Basic steps in complete development of Algorithm – Analysis and complexity of Algorithm – Asymptotic notations - Problem Solving techniques and examples**ADT**: List ADT, Stacks ADT, Queue ADT

UNIT-II

Algorithm Design Model: **Greedy** Method - Divide and Conquer - Dynamic Programming – Backtracking – Branch and Bound **Trees:** Preliminaries Binary Tree, Binary Search Trees

UNIT-III

Heap: General Idea, Priority Queues, Model, Simple Implementations, Binary Heap, Applications

UNIT-IV

Sorting: Sorting - Preliminaries, Insertion Sort, Shell Sort, Heap Sort, Merge Sort, QuickSort, External Sorting

15 Hours

15 Hours

15 Hours

UNIT-V

15 Hours

Graphs: Definitions, Topological Sort, Shortest Path Algorithm, Minimum panning Tree, Application of Depth First Search, **Theory of NP-Completeness:** Formal language framework, Complexity classes – P, NP -NP Reducibility and NP-Complete, NP-Hard

Learning Resources

Text Books

- 1.Aho, J. E. Hopcroft and J. D. Ullman. Design and Analysis of Computer Algorithms. 1sted. Addison-Wesley, 2009.
- 2. Horowitz and Sahani. Fundamentals of Computer Algorithms. 2nd ed. Galgotia, 2008.
- 3.Weiss, M. A. Data Structure and Algorithm analysis in C. 2nd ed. Pearson Education Asia,2002.

References

- 1.Baase, S. and Allen Van Gelder. Computer Algorithms-Introduction to Design and Analysis.New Delhi: Pearson Education, 2008
- 2.Goodrich, M.T. and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet Examples. New Delhi: Wiley, 2006.

Websites

1.https://thingsee.com/blog/quality-hardware-list-for-your-iot-projects

2.https://tools.ietf.org/html/rfc7452. http://dret.net/lectures/iot-spring15/protocols

3.http://iot.intersog.com/blog/overview-of-iot-development-standards-and frameworks

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	1	1
CO2	3	3	3	2	2	2	2	1	1	1
CO3	3	3	3	3	2	2	1	1	2	1
CO4	3	3	3	2	2	2	1	2	1	1
CO5	3	3	2	2	1	1	2	1	1	1
Average	3	3	2.8	2.2	1.8	1.8	1.6	1.2	1.2	1

Low -1

CO – PSO Mapping

Strong – 3	Medium - 2	
Strong – 3	Medium - 2	

PDS 2	20
-------	----

Cours	Name of the Course	Cate	Hours	Cre
24PDS4301	Data analytics using excel	GE	4	3

The aim of this course is to understand the basic of Data Analytics. It enables to apply Analytics using Excel Advance Formulas, Functions, Macros PivotTables, Visualize Data using various types of data representations.

Course Outcomes

At the end of the course, the students will be able to

CO1: examine the purpose of Data Analytics

CO2: gain knowledge about basic Formulas and Functions, in Excel

CO3: examine the Advance Formula for data analytics.

CO4: analyze data using Pivot table for Data Validation

CO5: collect the various types of Charts in Excel

Unit I

12 Hours

Introduction: Introduction to Data Analytics –Need of Analytics-Phases of Data Analytics-Exploring Data- Probability and Decision Making under Uncertainty.

Unit II

12 Hours

Excel Function: Analytics Using Excel- Basic formula-If Conditions-If combined with Andand Or -SumIf Common Functions- Date and Time- Text functions-Functionality Using Ranges.

Unit III

Advance Formula and Macros: Advance Formulas – Vlookup-Hlookup- Countif-Financial Functions- Sorting- Filter- Text to Column- Data Validation-Macros-Working with Macros -Recording a Macro - Playing and Deleting a Macro - Adding a Macro to the Quick Access Toolbar

Unit IV

Pivot Table: Pivot Table- Creating PivotTables- Manipulating a PivotTable- Using the PivotTable Toolbar- Changing Data Field- Properties-Displaying a PivotChart-Setting PivotTable Options- Adding Subtotals to PivotTables

Unit V

Data Visualization: Data Visualization- Different types of chart, Formatting Chart Objects, Changing the Chart Type. Case study-Time sheet preparation-Sales Analysis-Customer service- Budget preparation chart.

12 Hours

12 Hours

Learning Resources

Text Books

1.S. Christian Albright and Wayne L. Winston, Analytics: "Data Analysis and Decision Making", Sixth Edition, 2014.

2. John Walkenbach, Michael Alexander, and Richard Kusleika, "Excel 2019 Bible", John Wiley & Sons, 2019.

Websites

1.https://www.excel-easy.com/data-analysis.html

2.https://www.makeuseof.com/tag/data-analysis-excel/

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	2	1	1	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	2	2	1	1
CO4	3	3	3	2	2	1	1	1	1	1
CO5	3	2	2	2	1	1	2	1	1	1
Average	3	2.8	2.6	2.4	2.2	1.8	1.6	1.2	1	1

CO – PSO Mapping

Strong – 3	Medium - 2	Low -1
------------	------------	--------

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4303	Web programming	GE	4	3

The course on web programming introduces students to the fundamental concepts and tools used in developing dynamic and interactive websites. Through this course, students gain practical skills and understanding of web development principles, empowering them to build engaging and functional websites for diverse purposes.

Course Outcomes

At the end of the course, students will be able to CO1: examine .NET Framework and Windows Application CO2: inspect presentation controls and namespaces. CO3: prepare with backend using ADO.NET CO4: value about web application and state management CO5: score knowledge on connecting XML, LINQ and AJAX

UNIT-I

12 Hours

Overview of .NET Framework: CLR-CTS- Metadata and Assemblies-.NET Framework Class Library – BCL- Windows Forms – ASP.NET– Tools in the .NET Framework- New Features of .NET Framework: Portable Class Libraries.

Introducing Windows Application: Introduction – Creating Windows Forms- Customizinga Form Collecting User Input in windows Forms and Events : Buttons-Text Boxes- Check Boxes-Radio Buttons –Combo Boxes –Date and Time Picker – Calendar-List Boxes –Checked List Box –List View – Tree View

UNIT-II

12 Hours

Presentation and Informational Controls in Windows Forms and Events: Labeling- Link Label-Status Bar- Picture Box-Image List-Progress Bar-Tool Tip –Introducing to ADO.net: Under standing ADO.NET- Creating Connection Strings –Creating a Connection to a Database-Creating a Command Object- Working with Data Adapters – Using Data Reader work with Database.

12 Hours

UNIT-III

ASP.NET : Life cycle- Specifying a Location for a Web Application - Adding controls to web form. Web Server Controls: The Control Class - The Web Control Class - The Button Control - The Text Box Control - The Label Control - The Hyper Link Control - The Link Button Control - The Place Holder Control - The Hidden Field Control - The Check Box Control - The Radio Button Control -The List Box Control -The Drop Down List Control -The Image Control -The Image Button Control - The Table Control - Menus - Validation Server Controls - Master Page. UNIT-IV

State Management: Understanding the session object Sessions and the Event Model, Configuring, In-Process Session State, Out-of-Process Session state Application Object, Query strings, Cookies, View State, Global .asax. XML and .NET: Basics of XML, Create XML Document - The Role of the Animation class types-The To, From and by properties – The Role of the Timeline Base Class – Authoring and Animation- Controlling the pace of an animation - Reversing and Looping an Animation – The Role of Story Boards

UNIT-V

LINQ: Introducing LINQ Queries- Standard Query Operators- Introducing LINQ to Dataset, SQL and XML- The Ling Data Source Control. Data Binding - Grid View, Details view, Forms view.ASP. NET.

Learning Resources

Text Books

1. C# 2012 Programming Covers .NET 4.5 Black Book. Dream tech press, Kogent Learning Solutions, 2013. (Unit 1.1, Unit 2.2, Unit 2.3, Unit 2.4, Unit 3, Unit 4, Unit 5) 2. Liberty, Jesse, and Dan Hurwitz. Programming. NET Windows Applications. "O'Reilly Media, Inc.", 2004. (Unit 1.2,1.3, 2.1)

3. Troelsen, Andrew, and Philip Japikse, C# 6.0 and the .NET 4.6 Framework. press, 2015. (Unit 4.3)

References Books

1. Albahan Joseph, and Ben Albahari. C# 5.0 in a Nut Shell: The Definitive Reference. "Orielly Media Inc", 2012

2. Anne Boehm . Joel. Murach's C# 2015. United States of America: Murach's, 2016.

3. Delamater. Mary. Anne Boehm. ASP.NET 4.5 Web Programming with C# 2012. United States of America: Murach's, 2013.

12 Hours

4. John Sharp. Microsoft Visual C# Step by Step. United States of America: Pearson Edition, 2018.

5. Price, Jason, and Mike Gunderlov. Mastering Visual C#.Net. John Wiley & Sons, 2006

Websites

1.http://www.w3schools.com/aspnet/aspnet.asp

2.http://csharp.net-tutorials.com/xml/introduction/

3.http://ajax.net-tutorials.com/basics/introduction/

4.http://www.c-sharpcorner.com/

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	2	2	1	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	2	2	1	1
CO4	3	3	2	2	2	2	2	2	1	1
CO5	2	2	2	2	1	1	2	1	1	1
Average	2.8	2.8	2.4	2.4	2.2	2	1.8	1.6	1	1

CO – PSO Mapping

Strong – 3 Medium - 2 Low -1

Course Code	Name of the Course	Category	Hours/Wk	Credits
24PDS4402	Big data analytics	Core	6	4

To introduce the concepts of big data analytics and developing a real time applications

Course Outcomes

Students will be able to

CO 1: revise basic concepts of big data analytics and technologies

CO 2: propose the concept of HDFS, Map reduce for storing and processing of Big data

CO 3: analyze and perform different operations on data using Pig, Hive, and Hbase

CO 4: evaluate the tools and methods for analyzing Big data analytics model

CO 5: formulate real time big data analytics applications

UNIT-I

Introduction to big data analytics: Classification of Digital Data, Structured and Unstructured Data - Introduction to Big Data: Characteristics - Evolution - Definition - Challenges with Big Data - Other Characteristics of Data - Why Big Data - Traditional Business Intelligence versus Big Data - Data Warehouse and Hadoop Environment Big Data Analytics: Classification of Analytics - Challenges - Big Data Analytics important - Data Science - Data Scientist -Terminologies used in Big Data Environments.

UNIT-II

Big data technology landscape: NoSQL, Comparison of SQL and NoSQL, Hadoop -RDBMS Versus Hadoop - Distributed Computing Challenges - Hadoop Overview - Hadoop Distributed File System - Processing Data with Hadoop - Managing Resources and Applications with Hadoop YARN - Interacting with Hadoop Ecosystem

UNIT-III

HADOOP AND HDFS:Introduction to Hadoop - RDBMS vs Hadoop- distributed computing challenges - A Brief History of Hadoop- The Hadoop Distributed Filesystem- Processing Data with Hadoop - Anatomy of a MapReduce Works - Anatomy of a MapReduce Job Run- Job Scheduling- Shuffle and Sort- Task Execution

UNIT-IV

Hive: Introduction - Architecture - Data Types - File Formats - Hive Hadoop eco system: Query Language Statements - Partitions - Bucketing - Views - Sub- Query - Joins -Aggregations - Group by and Having - RCFile Implementation - Hive User Defined Function -Serialization and Deserialization. Pig: Introduction - Anatomy - Features - Philosophy - Use Case for Pig - Pig Latin Overview - Pig Primitive Data Types - Running Pig - Execution Modes of Pig -

PDS 25

18 Hours

18 Hours

18 Hours

HDFS Commands - Relational Operators - Eval Function - Complex Data Types - Piggy Bank -

User-Defined Functions

UNIT-V

18 Hours

Case Studies: Hadoop Usage at Last.fm - Hadoop and Hive at Facebook- Nutch Search Engine- Log Processing at Rackspace – Cascading - TeraByte Sort on Apache Hadoop 601 - Using Pig and Wukong to Explore Billion-edge Network Graphs - Recent Trends in Big Data Analytics

Learning Resources

Recommended Text

1. Big Data and Analytics, Seema Acharya, Subhashini Chellappan, First Edition, 2015, Wiley.

2. Tom White, Hadoop: The Definitive Guide, O'Reilly Media Inc., 2015.

Reference Books

1. Lublinsky, Boris, Kevin T. Smith, and Alexey Yakubovich. Professional hadoop solutions. John Wiley & Sons, 2013.

2. Big Data Analytics, RadhaShankarmani, M Vijayalakshmi, Second Edition, 2017, Wiley

3. Hadoop Essentials: A Quantitative Approach, Henry H. Liu, First Edition, 2012, PerfMath Publishers

Websites

1.https://www.ibm.com/analytics/big-data-analytics

2.https://www.simplilearn.com/what-is-big-data-analytics-article

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	1	2	1	1
CO4	3	2	3	2	2	2	1	1	1	1
CO5	2	3	2	2	1	1	2	1	1	1
Average	2.8	2.8	2.6	2.2	2	1.8	1.4	1.2	1.2	1

CO – PSO Mapping

Subing = 5 Medium = 2 Low =	Strong – 3	Medium - 2	Low -1
-----------------------------	------------	------------	--------

Course	Name of the Course	Category	Hours/Wk.	Credits
24PDS4404	Artificial Intelligence	Core	5	4

This course aims to give an overview of artificial intelligence (AI) principles and develop a basic understanding of the building blocks of AI. It acquires the knowledge about the Search, Knowledge representation, inference, logic, reasoning and learning.

Course Outcomes

At the end of the course students should be able to:

CO1: analyze the key characteristics of intelligent agents

CO2: create the pre-processing methods for Information Retrieval

CO3: examine the suitable search strategy to solve the search problems

CO4: assemble adversarial search to find the optimal move for a given game

CO5: design a plan graph for the given problem like Constraints satisfaction problems and STRIPS problems - Apply

Unit 1

Introduction: The foundations of AI - The History of AI- Intelligent agents- Agent based system. PROBLEM SOLVING: Searching for solution- Uninformed/Blind search - Informed/ Heuristic search - A* search - Hill-climbing search - Constraint satisfaction problem.

Unit 2

Knowledge representation and planning Logics - First order logic, Inference in first order logic, Knowledge representation. PLANNING: The planning problem - Planning with state space search -Partial order search - Planning with proportional logic - Planning and acting in the real world. Adversarial planning.

Unit 3

Uncertain knowledge and probabilistic reasoning Uncertainty- Probabilistic reasoning - Semantics of Bayesian network -Approximate inference in Bayesian network, exact inference in Bayesian network - Probabilistic reasoning over time.

Unit 4

Learning:Learning from observation - Knowledge in learning -Statistical learning methods -Reinforcement learning

Unit 5

Decision-making: Basics of utility theory, decision theory, sequential decision problems, elementary game theory, sample applications. ROBOTICS: Introduction

15 Hours

15 Hours

15 Hours

15 Hours

Learning Resources

Reference Books

1. Stuart Russell and Peter Norvig, —Artificial Intelligence: A Modern Approachl, Pearson Education, 2018.

2. David Pool, Alan Mackworth, —Artificial Intelligence: Foundations of Computational agents, Cambridge University, 2015.

3. Nils J. Nilsson, —The Quest for Artificial Intelligence: A History of Ideas and achievements, Cambridge University Press, 2010.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	1	1
CO2	3	3	2	2	2	2	2	2	1	1
CO3	3	3	3	3	3	2	1	2	1	1
CO4	3	2	3	2	2	2	1	1	1	1
CO5	3	3	2	2	1	1	2	1	1	1
Average	3	2.8	2.6	2.2	2	1.8	1.6	1.6	1	1

CO – PSO Mapping

Strong – 3 Medium - 2 Low -1

Course Code	Name of the Course	Category	Hours/Wk	Credits
24PDS4406	Statistics - I	Core	5	4

This course aims to develop knowledge and understand fundamental concepts in probability and statistics.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: organize, manage and present data.

CO2: understand, describe, and calculate the measures of data and correlation.

CO3: recognize and understand various probability distribution functions, calculate and interpret expected results.

CO4: apply the methods of estimating a parameter.

CO5: understand the concept of probability and apply for simple events.

UNIT-I

Introduction to Statistics: Introduction-Data Collection and Descriptive Statistics-Inferential Statistics and Probability Models-Populations and Samples-A Brief History of Statistics -Origin and development of Statistics, Scope, limitation and misuse of statistics. Types of data: Types of Measurement. Presentation of data by tables: construction of frequency distributions for discrete and continuous data, graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions

UNIT-II

Descriptive statistics and Correlation: Introduction-Describing Data Sets-Frequency Tables and Graphs-Relative Frequency Tables and Graphs-Grouped Data, Histograms, Ogives, and Stem and Leaf Plots-Summarizing Data Sets-Sample Mean, Sample Median, and Sample Mode-Sample Variance and Sample Standard Deviation-Sample Percentiles and Box Plots-Chebyshev's Inequality-Normal Data Sets-Paired Data Sets and the Sample Correlation Coefficient -Scatter plot, Karl Pearson coefficient of correlation, Spearman's rank correlation coefficient, multiple and partial correlations (for 3 variates only).

UNIT-III

Random distribution – Discrete: Random Variables-Types of Random Variables-Jointly Distributed Random Variables-Independent Random Variables-Conditional Distributions-Expectation-Properties of the Expected Value-Variance-Covariance -Moment Generating Functions-Chebyshev's Inequality -The Bernoulli and Binomial Random Variables-Computing the Binomial Distribution Function- The Poisson Random Variable-Computing the Poisson Distribution Function

15 Hours

15 Hours

$\mathbf{UNIT} - \mathbf{IV}$

Random distribution – Continuous: The Hypergeometric Random Variable-The Uniform Random Variable- Normal Random Variables-Exponential Random Variables-The Poisson Process-The Gamma Distribution-Distributions Arising from the Normal-The Chi-Square Distribution-The t-Distribution-The F Distribution-The Logistics Distribution

UNIT-V:

15 Hours

Distributions of sampling statistics: Introduction-The Sample Mean-The Central Limit Theorem-Approximate Distribution of the Sample Mean, How Large a Sample Is Needed?-The Sample Variance-Sampling Distributions from a Normal Population-Distribution of the Sample Mean, Joint Distribution of X and S-Sampling from a Finite Population

Learning Resources

Text Books

1.Sheldon M. Ross, Introduction to Probability and Statistics for Engineers And Scientists, Elsevier Academic Press, UK, Fifth Edition, 2023

Unit 1: Chapter 1: section: 1-4

Unit 2: Chapter 2: section: 1-6

Unit 3: Chapter 4: section: 1-8, chapter 5: section 1-8

Unit 4: Chapter 6: section: 1-6

Unit 5: Chapter 7: section: 1-7

2. Rohatgi V.K and Saleh E, An Introduction to Probability and Statistics, 3rd edition, John Wiley & Sons Inc., New Jersey, 2015.

3. Gupta S.C and Kapoor V.K, Fundamentals of Mathematical Statistics, 11th edition, Sultan Chand & Sons, New Delhi, 2014Gilbert Strang, Introduction to Linear Algebra, Wellesley - Cambridge Press, Sixth Edition, 2023

Reference Books

1.Jim Frost, Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10
CO 1	3	3	3	3	3	3	3	2	2	2
CO 2	3	3	3	3	3	3	3	2	2	2
CO 3	3	3	3	3	3	2	2	2	2	2
CO 4	3	3	3	3	2	2	2	2	2	2
CO 5	3	3	3	3	2	2	2	2	2	2
Average	3	3	3	3	2.6	2.4	2.4	2	2	2

Strong – 3 Medium - 2 Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4408	Big data analytics lab	Core	5	4

To introduce the concepts of big data analytics and developing a real time applications

Course Outcomes

Students will be able to

CO 1: configure Hadoop and perform File Management

CO 2: apply Map Reduce program to real time issues.

CO 3: critically analyze huge data set using Hadoop distributed file systems and Map Reduce

CO 4: experimenting different data processing tools like Pig, Hive.

CO 5: develop real time big data analytics applications

UNIT-I

Install Apache Hadoop

Perform setting up and Installing Hadoop in its three operating modes: Standalone

Pseudo, Distributed, Fully Distributed

To use Web Based Tools to Manage Hadoop Set-up

Implement the following file management tasks in Hadoop: Adding files and directories

Retrieving files, Deleting Files

UNIT-II

Develop a Map Reduce program to calculate the frequency of a given word in a given file.

Develop a Map Reduce program to find the maximum temperature in each year.

Develop a Map Reduce program to find the grades of student's.

Develop a Map Reduce program to implement Matrix Multiplication.

Develop a Map Reduce to find the maximum electrical consumption in each year given electrical consumption for each month in each year.

UNIT-III

Develop a Map Reduce to analyze weather data set and print whether the day is shinny or cool day. (National Climatic Data Centre (NCDC) Data set)

Develop a Map Reduce program to find the number of products sold in each country by considering sales data containing fields like Tranction Date Product Price Payment Type Name City\State Country Account Created Last Login Latitude Longitude

Data sets from different sources as Input

Develop a Map Reduce program to find the tags associated with each movie by analyzing movie lens data. (https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset)

15 Hours

15 Hours

15 Hours

PDS 32

UNIT-IV

Install and Run Pig then write Pig Latin scripts to sort, group, join, project and filter the data.

Install and Run Hive then use Hive to Create, alter and drop databases, tables, views, functions and Indexes.

Develop a program to calculate the maximum recorded temperature by year wise for the weather dataset in Pig Latin

Develop a program to calculate the maximum recorded temperature by year wise for the weather dataset in Pig Latin

Write queries to sort and aggregate the data in a table using Hive QL

Develop a Map Reduce to find the maximum electrical consumption in each year given electrical consumption for each month in each year.

Write a program to implement combining and partitioning in hadoop to implement a custom partitioner and Combiner

UNIT-V

15 Hours

15 Hours

Analyze the sentiment for product reviews; this work proposes a Map Reduce technique provided by Apache Hadoop

Trend Analysis based on Access Pattern over Web Logs using Hadoop.

Implementation of decision tree algorithms using Map Reduce.

Implementation of K-means Clustering using Map Reduce.

Generation of Frequent Item set using Map Reduce.

Learning Resources

Text Books

1. Big Data and Analytics, Seema Acharya, Subhashini Chellappan, First Edition, 2015, Wiley.

2. Tom White, Hadoop: The Definitive Guide, O'Reilly Media Inc., 2015.

Reference Books

1. Lublinsky, Boris, Kevin T. Smith, and Alexey Yakubovich. Professional hadoop solutions. John Wiley & Sons, 2013.

2. Big Data Analytics, RadhaShankarmani, M Vijayalakshmi, Second Edition, 2017, Wiley

3. Hadoop Essentials: A Quantitative Approach, Henry H. Liu, First Edition, 2012, PerfMath Publishers

Websites

1.https://www.ibm.com/analytics/big-data-analytics

2.https://www.simplilearn.com/what-is-big-data-analytics-article

3.https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-big-dataanalytics

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	2	3	2	1	2	1	1
CO4	3	2	2	2	2	2	1	1	1	1
CO5	2	2	2	2	1	1	2	1	1	1
Average	2.8	2.4	2.4	2.2	2	1.8	1.4	1.2	1.2	1

Strong – 3	Medium - 2	Low -1

PDS 35

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4410	Software Engineering	DSE	5	4
	for Data Science			

To understand the software engineering principles and ensure software quality

Course Outcomes

At the end of the course, students will be able to

CO1: demonstrate the Software Engineering Principle

CO2: examine Software Life Cycle Models for Software Development

CO3: setup the Requirements Engineering skills and gather Requirements

CO4: to design a quality Software

CO5: practice the appropriate testing methodologies

UNIT-I

Software and Software Engineering: The nature of software - Software Engineering - The Software Process - Software Engineering Practice - Software Myths

Process Models: A Generic Process Model - Process Assessment and Improvement -Prescriptive Process Models - Product and Process

UNIT-II

Recommended Process Model: Requirements Definition - Preliminary Architectural Design -Resource Estimation - First Prototype Construction - Prototype Evaluation - Prototype Evolution - Prototype Release - Maintain Release Software

Human Aspects of Software Engineering: Characteristics of a Software Engineer - The Psychology of Software Engineer - The Software Team - Team Structures - The impact of Social Media - Global Teams

Principles that guide practice : Core Principles - Principles that guide each Framework Activity -Communication Principles - Planning Principles - Modeling Principles - Construction Principles - Deployment Principles

15 Hours

PDS 36

UNIT-III

Understanding Requirements: Requirements Engineering - Building the Analysis Model -Requirements Monitoring - Requirements Modeling - A Recommended Approach: Requirements Analysis - Scenario- Based Modeling - Class-Based Modeling - Functional Modeling -Behavioural Modeling

UNIT-IV

Design Concepts: Design within the context of Software Engineering - The Design Process - Design Concepts - The Design Model Quality and Security : Introduction - Software Quality - The Software Quality Dilemma - Software Quality Assurance: Background Issues - Elements of Software Quality Assurance ,SQA Process and Product Characteristics - SQA Tasks, Goals and Metrics - Formal Approaches - Statistical SQA - Software Reliability.

UNIT-V

Software Testing -Component Level: A Strategic Approach to Software Testing - Planning and Record Keeping - Test-Case Design - White-box Testing - Black-Box Testing - Object- oriented Testing, Software Testing - Integration Level: Software Testing Fundamentals - Integration Testing, Artificial Intelligence and Regression Testing.

Learning Resources

Text Book

1.Pressman, Roger S., and Bruce R. Maxim. Software Engineering: A Practitioner's Approach, Ninth Edition, 2020

Reference Books

1.Martin, Robert C. Agile software development: principles, patterns, and practices.Prentice Hall, 2002.

2.Schach, Stephen R. Object-oriented software engineering. McGraw-Hill, 2008.

3.Sommerville, Ian. "Software engineering 9th Edition." ISBN-10 137035152 (2011).

Websites

1. https://www.d.umn.edu/~gshute/softeng/principles.html

15 Hours

15 Hours
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	1	2	1	1
CO4	3	2	3	2	2	2	1	1	1	1
CO5	2	2	2	2	1	1	2	1	1	1
Average	2.8	2.6	2.6	2.2	2	1.8	1.4	1.2	1.2	1

CO – PSO Mapping

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4412	Information security and ethics	DSE	5	4

To introduce and familiarize the students to security issues in computing, core concepts and vocabulary of computer security

Course Outcomes

At the end of the course, students will be able to

- **CO1:** create computer security, including users, software, devices, operating systems, networks, law, and ethics
- **CO2:** debate cryptography an essential tool that is critical to computer security
- **CO3**: analyse the different aspects of computer security and privacy
- evaluate the aspects of computer security **CO4**:
- CO5: design a system that uses user authentication, prevents malicious code execution, encrypts the data, protects privacy, implements firewall, detects intrusion, and more.

UNIT-I

Security Problem in Computing: Meaning of "Secure" - Attacks - Meaning of Computer and information Security - Computer Criminals - Methods of Defense Cryptography : Terminology and Background - Principles of Cryptography - Cryptography tools - Substitution Ciphers - Transpositions (Permutations) - Making "Good" Encryption Algorithms - The Data Encryption Standard (DES) - The AES Encryption Algorithm - PublicKey Encryption - The Uses of Encryption - Digital Signatures and Certificates -Hybrid Cryptography Systems - Protocols for secure Acceptable Use Policies - Reasons for social media being hazardous to the corporate network Balancing Security and Social Networking in business.

UNIT-I

Program Security: Secure Programs - Nonmalicious Program Errors - Viruses and Other Malicious Code -Targeted Malicious Code - Controls against Program Threats, Security Issues in Social Networking

UNIT-III

Database and Data Mining Security

Introduction to Databases - Security Requirements - Reliability and Integrity - Sensitive Data Inference - Multilevel Databases - Proposals for Multilevel Security - Data Mining, Security in Networks, Network Concepts - Threats in Networks - Network Security Controls - Firewalls -IntrusionDetection Systems - Secure E-Mail

PDS 38

15 Hours

15 Hours

UNIT-IV

Administering Security

Security Planning - Risk Analysis - Organisational Security Policies - Physical Security. The Economics of Cyber security

Making a Business Case - Quantifying Security - Modeling Cyber security

UNIT-V

Privacy in Computing

Privacy Concepts - Privacy Principles and Policies - Authentication and Privacy – Data Mining -Privacy on The Web - E-Mail Security - Impacts on Emerging Technologies Legal and Ethical Issues in Computer Security Protecting Programs and Data - Information and the Law - Rights of Employees and Employers - Redress for Software Failures - Computer Crime - Ethical Issues in Computer Security - Case Studies of Ethics

Learning Resources

Text Books

1.Pfleeger ,Charles P and Shari Lawrence Pfleeger. Security in Computing, Released January2015, Pearson, ISBN: 9780134085074

2.Bahadur ,Gary. Securing the Clicks Network Security in the Age of Social Media. 1st ed. McGraw-Hill, 2012.

Reference Books

1.Daswani, Neil, Christoph Kern and Anita Kesavan. Foundations of Security: What Every Programming Needs to Know. Apress, 2007

Websites

1.http://www.trendmicro.fr/media/wp/securityguide-social-networks-whitepaper-en.pdf 2.http://paper.ijcsns.org/07_book/201306/20130619.pdf

15 Hours

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	1	1
CO2	3	3	2	2	2	2	2	1	1	1
CO3	3	3	3	2	3	2	1	2	1	1
CO4	2	2	3	2	2	1	1	1	1	1
CO5	2	2	2	2	1	1	2	1	1	1
Average	2.6	2.6	2.6	2	2	1.6	1.6	1.2	1	1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4302	Data analysis using tableau	GE	4	3

This course aims to learn how to become a master at communicating business-relevant implications efficiently using data visualizations in Tableau, the most popular visualization program in the business world. Tableau is a data visualization tool or business intelligence tool which analyzes and shows data in a chart or report fast. Data visualization and predictive analytics is a norm in every industry today.

Course Outcomes

At the end of the course students should be able to: Understand data visualization

CO1: create all the various data sources

CO2: justify complex calculations, share and publish visualizations

CO3: analyze various types of functions in tableau.

CO4: inspect the filtering and groups.

CO5: compare the variety of basic charts.

Unit I

Introduction: Introducing Visualization and Tableau - data visualization - expectations for a data visualization tool - reasons to make a switch to Tableau - positioning of Tableau - Tableau product line - file types in Tableau Tableau Workbook (twb) - Tableau Packaged Workbook (twbx) Tableau Data Source (tds) file - Tableau Packaged Data Source (tdsx) file

Unit II

Connecting with Tableau: Working with Single and Multiple Data Sources Desktop architecture - Data layer - Data connectors - Tableau environment To open – To close - Start page - Data Source Page Workspace - Workbooks and Sheets Visual Cues and Icons in Tableau - Connect to a File -Connect to a Text File - Connect to MS Access

Unit III`

Function in Tableau: Table Calculations - Profitability as Percent of Total - Moving average
Types of moving average - Rank - LOD (Level of Detail) - Percentile -Number functions String functions - Logical Functions - Date functions

Unit IV

Filtering and Groups: Simplifying and Sorting Your Data Filtering – filtering – Sorting – Discrete and Continuous Data - Groups - create a group - editing an existing group - creating hierarchies sets Contents - Difference between a set and group - Group Set Creating parameters

12 Hours

12 Hours

12 Hours

Unit V

12 Hours

Statistics and Charts: Statistics - number summary - Spread of data - Box plot - Pie chart - Line

 $Graph\ -\ Scatter\ plot\ -\ Histogram\ -\ Word\ Cloud\ -\ Waterfall\ charts\ -\ Bump\ charts\ -\ Bullet\ graph$

Learning Resources

Textbook

1. Joshua N. Milligan, "Learning Tableau 2019", Packt Publishing, 2019

Reference Books

1. Seema Acharya, Subhashini Chellappan, "Pro Tableau", A step by step guide, A Press 2017.

2. Daniel G. Murray, with the InterWorks team "Tableau Your Data", Wiley, 2013

Websites

1.https://www.tutorialspoint.com/tableau/tableau_quick_guide.htm

2.https://www.javatpoint.com/tableau

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	3	3	2	2	1	1	1
CO2	3	3	2	3	2	2	1	1	1	1
CO3	3	3	3	2	3	2	2	2	1	1
CO4	3	3	3	2	2	1	1	1	1	1
CO5	3	2	2	2	2	1	2	1	1	1
Average	3	2.8	2.4	2.4	2.4	1.6	1.6	1.2	1	1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS4304	Multimedia analytics	GE	4	3

This course aims to learn how to become a master at a solid understanding of multimedia data types, including images, videos, audio, and other forms of rich media. Students will learn techniques for collecting, preprocessing, and cleaning multimedia data for analysis, including handling large datasets and managing data quality issues. Methods for extracting meaningful features from multimedia data and representing them in a format suitable for analysis, such as feature vectors or other numerical representations.

Course Outcomes

At the end of the course students should be able to: Understand data visualization

CO1: create various perception of multimedia

CO2: design the model for experiment to interpret the results of multimedia analysis.

CO3: analyze various types of evaluating the quality

CO4: manage the scaling up multimedia analytics.

CO5: support a variety of charts for visualizations

Unit I

Introduction: Introduction - A Multimedia Analytics Model : Introduction – Human Perception of Multimedia – Machine Perception of Multimedia – Multimedia Analytics.

Unit II

Instantiating the Model: Data Collection – Topical Analysis of Users and Venues – Experimental Setup – Experimental Results

Unit III

Evaluating Analytic Quality: Introduction – Method: Evaluating analytic tasks – Artificial actors – Evaluation Pipeline - Evaluation Measures – Interpretation.

Unit IV

Scaling Up Multimedia Analytics: Data Representation: Feature Selection – Compression and Decompression – The Ratio-64 Representation – Interactive Learning – Experimental Setup – Result and Discussions.

Unit V

Visualization Concepts: Statistics - number summary - Spread of data - Box plot - Pie chart -Line Graph - Scatter plot – Histogram - Word Cloud - Waterfall charts - Bump charts - Bullet graph

PDS 43

12 Hours Venues

12 Hours

12 Hours

12 Hours

Learning Resources

Textbook

1. Jan Zahalka, "The Machine in Multimedia Analytics", Packet Publishing, 2019

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	2	1	1	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	2	3	3	2	2	1	1	1
CO4	3	3	3	2	2	1	1	1	1	1
CO5	3	2	2	2	1	1	2	1	1	1
Average	3	2.8	2.4	2.4	2.2	1.6	1.6	1	1	1

CO – PSO Mapping

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5401	Machine learning	Core	5	4

To understand the different types, steps and algorithms involved in Machine Learning Process

Course Outcomes

At the end of the course, students will be able to

CO1: describe the data, essential steps for creating a typical ML model and the fundamentals of pattern classification

CO2: able to analyze different ML algorithms and unprocessed data and features

CO3: implement the essential techniques to reduce the number of features in a dataset and test the performance of predictive models

CO4: discuss multiple algorithms, combine and produce ensembles, discuss the essential techniques for modeling linear relations

CO5: experiment the clustering algorithms; develop a Web application embedding a ML model UNIT-I 15 Hours

Data Analytics with pandas and NumPy: NumPy and basic stats - Matrices - pandas library -Working with data - Null Values - Creating statistical graphs

Book 1, Chapter -10

Giving Computers the ability to learn from data - Introduction - Building intelligent systems to transform data into knowledge - The three different types of Machine Learning(ML) - Introduction to basic terminology and notations - A roadmap for building ML systems - Using Python for ML

Book 2, Chapter - 1

Training Simple ML Algorithms for Classification - Early History of ML - Implementing a Perceptron learning algorithm.

Book 2, Chapter -2

UNIT-II:

15 Hours

ML Classifiers using sckikit-learn: Choosing a classification algorithm - Training a perceptron - Modeling class probabilities via logistic regression - Maximum margin classification with support vector machines(SVM) - Solving nonlinear problems using a kernel SVM - Decision tree learning.

Book 2, Chapter 3

Data Preprocessing - Missing data - Categorical data - Partitioning a dataset into separate training and test datasets - Bringing features onto the same scale - Selecting meaningful features

- Assessing feature importance with random forests

UNIT-III

Compressing Data via Dimensionality Reduction - Unsupervised dimensionality reduction via principal component analysis - Supervised data compression via linear discriminant analysis -Using kernel principal component analysis for nonlinear mappings

Book 2, Chapter - 5

Learning Best Practices for Model Evaluation and Hyperparameter Tuning - Streamlining workflows with pipelines - Using k-fold cross-validation to assess model performance.

Book 2, Chapter -6

UNIT-IV

Combining different models for ensemble learning - Learning with ensembles - Combining classifiers via majority vote - Bagging: building an ensemble of classifiers from bootstrap samples - Leveraging weak learners via adaptive boosting

Book 2, Chapter - 7

Predicting Continuous Target Variables with Regression Analysis - Introducing Linear regression - Implementing an ordinary least squares linear regression model - urning a linear regression model into a curve -polynomial regression - Dealing with nonlinear relationships using random forests

Book 2, Chapter -10

UNIT-V

Working with Unlabelled Data – Grouping objects by similarity using k-means - Organising clusters as a hierarchical tree.

Book 2, Chapter - 11

Introduction to Embedding a ML model into a Web Application - Serialising fitted scikit-learn estimators - Setting up an SQLite database for data storage.

Book 2, Chapter -9

Learning Resources

Text Books

1. Corey Wade et al, Vahid Mirjalili, The Python Workshop, 2nd Edition, packs publishing, 2022 2. Sebastian Raschka and Vahid Mirjalili, Python Machine Learning, 3rd Edition, packt publishing, 2019

15 Hours

15 Hours

Reference Books

- 1. Andreas C. Mueller, Sarah Guido. Introduction to Machine Learning with Python. O'Reilly Media, Inc., 2016.
- 2. Ethem Alpaydin, Introduction to Machine Learning, 2nd Edition, http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12012, 2010
- Wes McKinney. Python for Data Analysis. O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, second edition, 2018

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	1	1	1	1
CO2	3	2	2	2	2	2	2	1	1	1
CO3	3	3	3	2	2	1	1	1	1	1
CO4	3	2	2	2	2	2	2	1	1	1
CO5	3	3	2	2	1	1	2	1	1	1
Average	3	2.6	2.2	2	1.8	1.6	1.6	1	1	1

CO – PSO Mapping

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5403	Machine learning lab	Core	5	4

To preprocess the data and build ML models using appropriate techniques and evaluate the model

Course Outcomes

Upon completion of the course, the student will be able to

CO1: recall the concepts pandas, NumPy and Matplotlib to read in , process and visualise data, implement linear classification algorithms

CO2: compare classifiers with linear and non-linear decision boundaries, select relevant features for the model construction

CO3: apply data compression and best practices for model evaluation and hyper parameter tuning

CO4: select appropriate algorithms and ensemble

CO5: inspect the clustering algorithms on unlabelled data, construct a web application embedding a ML model

15 Hours UNIT-I: 1. Programs using NumPy and pandas 2. Visualising using graphs 3. Perceptron learning algorithm 15 Hours UNIT-II: 4. Training a perceptron 5. Modeling logistic regression 6. Support vector machines(SVM) 7. Solving nonlinear problems using a kernel SVM 8. Decision tree **15 Hours** UNIT-III: 9. Unsupervised dimensionality reduction via principal component analysis 10. Supervised data compression via linear discriminant analysis 11. Using k-fold cross-validation to assess model performance 15 Hours UNIT-IV: 12. Debugging algorithms with learning and validation curves 13. Fine-tuning ML models via grid search 14. Implementing different performance evaluation metrics 15. Regularised methods for regression

16. Nonlinear relationships using random forests

UNIT-V:

15 Hours

- 17. Grouping objects by similarity using k-means
- 18. Organising clusters as a hierarchical tree
- 19. Embedding a ML model into a Web Application

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	2	3	2	1	2	1	1
CO4	3	3	3	2	2	2	2	1	1	1
CO5	2	2	2	2	1	1	2	1	1	1
Average	2.8	2.6	2.6	2.2	2	1.8	1.6	1.2	1.2	1

Strong – 3

Medium - 2

Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5405	Databases for data science	Core	5	4

To provide fundamentals of database design, modeling systems, data storage, world of data warehousing and NoSQL

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: describe the importance of relational data modeling and conceptual modelling

CO2: experiment with various database and compose effective queries

CO3: analyse the process of OLAP system construction

CO4: explain the use of NOSQL and its approach to the database

CO5: interpret the applications using Relational and NoSQL databases

Unit I

Fundamental Concepts of Database Management: Applications of Database Technology - Key Definitions - File versus Database Approach to Data Management - Elements of a Database System - Advantages of Database Systems and Database Management - Architecture and Categorization of DBMSs

Conceptual Data Modeling using the ER Model and UML Class Diagram: Phases of Database Design - The Entity Relationship Model - UML Class Diagram

Unit II

Types of Database Systems: Legacy Databases - Relational Databases: The Relational Model – Normalization Relational Databases: Structured Query Language - SQL Data Definition Language -SQL Data Manipulation Language

Lab: SQL DDL and DML

Unit III

Data Warehousing and Business Intelligence: Operational versus Tactical/Strategic Decision-Making - Data Warehouse Definition - Data Warehouse Schemas - The Extraction, Transformation, and Loading (ETL) Process - Data Marts.

Unit IV

Key Value Data Stores: Document Databases, Document oriented Database Features, Consistency, Transactions, Content Management Systems, E-Commerce Applications.

15 Hours

15 Hours

15 Hours Decision-N

Unit V

15 Hours

Document Oriented Database: Column- oriented NoSQL databases, Column-oriented NoSQL databases, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling,

Learning Resources

Text Book

1.Lemahieu, W., Broucke, S.vanden and Baesens, B. (2018) Principles of database management: The Practical Guide to storing, managing and analyzing big and small data. Cambridge, United Kingdom: Cambridge University Press.

2.Sadalage, P. & Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Wiley Publications, 1st Edition, 2022

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	1	2	1	1
CO4	3	2	3	3	2	2	1	1	1	1
CO5	2	3	2	2	1	1	2	1	1	1
Average	2.8	2.8	2.6	2.4	2	1.8	1.4	1.2	1.2	1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5407	Statistics -II	Core	5	4

To develop knowledge and understand fundamental concepts in probability and statistics

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: identify the four steps of hypothesis testing.

CO2: gain a thorough understanding of applied principles of statistics.

CO3: to develop knowledge and skills in theoretical, computational and application-oriented statistics **CO4**: apply the methods of analysis of variance

CO5: understand and apply the concept of non-parametric tests

UNIT-I

15 Hours

Hypothesis testing –Large Samples: Population and Statistics – Finite and Infinite population – Parameter and Statistics – Types of sampling - Sampling Distribution – Sampling Error - Standard Error – Test of significance –concept of hypothesis – types of hypothesis – Errors in hypothesistesting – Critical region – level of significance - Power of the test – p-value -Introduction-Significance Levels-Tests Concerning the Mean of a Normal Population-Case of Known Variance-Case of Unknown Variance: The t-Test-Testing the Equality of Means of Two Normal Populations-Case of Known Variances-Case of Unknown Variances-Case of Unknown and Unequal Variances-The Paired t-Test- Hypothesis Tests Concerning the Variance of a Normal Population-Testing for the Equality of Variances of Two Normal Populations

UNIT-II

15 Hours

Hypothesis Testing- Small Samples: Students t-distribution and its properties (without proofs) – Single sample mean test – Independent sample mean test – Paired sample mean test – Tests of proportion (based on t distribution) – F distribution and its properties (without proofs) – Tests of equality of two variances using F-test – Chi-square distribution and its properties (without proofs) – chisquare test for independence of attributes – Chi-square test for goodness of fit.

UNIT-III

15 Hours

Regression: Introduction-Least Squares Estimators of the Regression Parameters-Distribution of the Estimators-Statistical Inferences About the Regression Parameters-Inferences Concerning β -Inferences Concerning α - Inferences Concerning the Mean Response $\alpha+\beta \ge 0$ - Prediction Interval of a Future Response-Summary of Distributional Results

UNIT-IV

15 Hours

Analysis of variance: Introduction-An Overview-One-Way Analysis of Variance-Multiple Comparisons of Sample Means-One-Way Analysis of Variance with Unequal Sample Sizes-Two-Factor Analysis of Variance: Introduction and ParameterEstimation-Two-Factor Analysis of Variance: Testing Hypotheses-Two-Way Analysis of Variance with Interaction

UNIT-V

15 Hours

Distributions of sampling statistics: Introduction-The Sample Mean-The Central Limit Theorem-Approximate Distribution of the Sample Mean, How Large a Sample Is Needed?-The Sample Variance-Sampling Distributions from a Normal Population-Distribution of the Sample Mean, Joint Distribution of X and S-Sampling from a Finite Population

Learning Resources

Text Books

1. Sheldon M. Ross, Introduction to Probability and Statistics for Engineers And Scientists,

Elsevier Academic Press, UK, Fifth Edition, 2023

Unit 1: Chapter 2: section: 2-4

Unit 2:Chapter 2: section: 2-6

Unit 3: Chapter 4: section: 2-8, chapter 5: section 2-8

Unit 4: Chapter 6: section: 2-6

Unit 5: Chapter 7: section: 2-7

2. Gupta S.C and Kapoor V.K, Fundamentals of Mathematical Statistics, 22th edition, Sultan Chand & Sons, New Delhi, 2020.

3. Brian Caffo, Statistical Inference for Data Science, Learnpub, 2026.

Reference Books

1. Allen B. Downey, Think Stats- Exploratory data analysis, O'reilly, 2nd Edition

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley Publications, Tenth Edition

3. Jim Frost, Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10
CO 1	3	3	3	3	2	2	2	2	2	2
CO 2	3	3	3	3	2	2	2	2	2	2
CO 3	3	3	3	3	2	2	2	2	2	2
CO 4	3	3	3	3	2	2	2	2	2	2
CO 5	3	3	3	3	1	2	2	2	2	2
Average	3	3	3	3	1.8	2	2	2	2	2

CO – PSO Mapping

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5409	Data mining and warehousing	Core	5	4

To present an introduction to data mining and warehousing, with an emphasis on how to organize, maintain and retrieve effective information from a warehouse.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: describe the fundamental Concepts of Data mining and warehousing.

CO2: analyze the Preprocessing, data cleaning, Data integration and Transformation techniques.

CO3: comprehend the concepts of Association Rule Mining

CO4: understand the implementation of Classification and Prediction Accuracy.

CO5 : design data models to represent Data mining Applications.

Unit I

Introduction to Data mining & Data warehousing: Introduction – Data mining – Data mining functionalities – kinds of patterns can be mined – classification – major issues. Data warehouse – A multidimensional data model - Data warehouse architecture - Data warehouse implementation -From data warehouse to data mining

Unit II

Data pre-processing – Data cleaning – Data Integration and Transformation – Data Reduction – Discretization and concept hierarchy generation – Data mining primitives – Data mining Task.

Unit III

Association Rule Mining – Mining single dimensional Boolean association rules from transactional databases - mining multilevel association rules from transaction databases-

Unit IV

Classification and prediction – Issues regarding classification and prediction – classification by decision Tree Induction - Bayesian Classification - Classification by Back propagation classification based on concepts from association rule mining – prediction – classifier accuracy

Unit V

Clustering & Trends in Data Mining : Clustering - Introduction to types of Clustering -Applications and Trends in Data Mining – Data mining system products and Research prototypes– Social Impacts of Data Mining – Trends in Data mining

15 Hours

15 Hours

15 Hours

15 Hours

Learning Resources

Textbook

1. Jiawei Han, Michelien Kamber, "Data Mining Concepts and Techniques", 3rd Edition, 2014.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	1	2	1
CO2	3	3	2	3	2	2	1	1	1	1
CO3	3	3	3	3	3	2	1	2	1	1
CO4	3	2	3	2	2	2	1	1	1	1
CO5	3	3	2	3	1	1	2	1	1	1
Average	3	2.8	2.6	2.6	2	1.8	1.4	1.2	1.2	1

CO – PSO Mapping

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5301	Natural language processing	DSE	5	3

To explore the concepts and fundamentals of Natural Language Programming

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: explain the challenges of empirical methods for natural language processing (NLP)

applications.

CO2: to introduce basic models and methods used in NLP applications to formulate computational solutions.

CO3: comprehend the Syntactic Analysis of NLP.

CO4: to Design the Semantics and Pragmatics concepts.

CO5: overview of the major applications in NLP

UNIT-I

Knowledge in Speech and Language Processing – Ambiguity - Models and Algorithms- Language, Thought, and Understanding - The State of the Art - History - Applications - Basic NLP Book1 : Chapter 1, Book 2: Chapter 1

UNIT-II

Word analysis: Regular Expressions - Words & Transducers- Survey of English Morphology- Finite-State Morphological Parsing - Word and Sentence Tokenization- N-grams- Counting Words in Corpora- Simple (Unsmoothed) N-grams- Training and Test Sets- Part-of-Speech Tagging- English Word Classes- Tagsets for English- Part-of-Speech Tagging- Rule-Based Part-of-Speech Tagging-**Evaluation and Error Analysis**

Book1 : Chapter 2, 3,4,5

UNIT-III:

Syntactic analysis: Formal Grammars of English- Constituency- Context-Free Grammars- Grammar Rules for English - Treebanks - Finite-State and Context-Free Grammars - Dependency Grammars -Parsing with Context-Free Grammars - Parsing as Search- Dynamic Programming Parsing Methods-Statistical Parsing- Probabilistic Context-Free Grammars- Probabilistic CKY Parsing of PCFGs-Learning PCFG Rule Probabilities

Book1 : Chapter 12, 13, 14

15 Hours

15 Hours

UNIT-IV

15 Hours

Semantics and pragmatics: Computational Desiderata for Representations- First-Order Logic, Computational Semantics –Syntax Driven Semantic analysis, Semantic attachments Semantic Attachments for a Fragment of English, Lexical Semantics- Word Senses, Relations between Senses, WordNet: A Database of Lexical Relations- Event Participants: Semantic Roles and Selectional Restriction

Book1: Chapter 17, 18,19

UNIT-V

15 Hours

Applications - Information Extraction, Question Answering and Summarization, Dialogue and Conversational Agents

Book1 : Chapter 22, 23,24

Learning Resources

Text Books

1. Daniel Jurafsky, James H. Martin—Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014.

2. Patel, Ankur A., and Ajay Uppili Arasanipalai. Applied Natural Language Processing in the Enterprise. " O'Reilly Media, Inc.", 2021.

Reference Books

1. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.

2. Richard M Reese, —Natural Language Processing with Javal, O_Reilly Media, 2015.

3. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.

4. Tanveer Siddiqui, U.S. Tiwary, —Natural Language Processing and Information Retrievall, Oxford University Press, 2008.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	1	1
CO2	3	3	2	2	2	2	2	2	1	1
CO3	3	3	3	3	3	2	1	2	1	1
CO4	3	2	3	3	2	2	1	1	1	1
CO5	3	3	2	3	1	1	2	1	1	1
Average	3	2.8	2.6	2.6	2	1.8	1.6	1.6	1	1

CO – PSO Mapping

Course	Name of the Course	Category	Hours/Wk.	Credits
Code				
24PDS5303	Reinforcement learning	DSE	5	3

To introduce the concepts and fundamentals of reinforcement learning and methods

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: describe the Concepts of Reinforcement Learning.

CO2: analyze the essential Programming and methods in reinforcement learning

CO3: explain the Temporal Difference learning and Deep Q networks to explore the essentials of Reinforcement learning.

CO4: define On Policy prediction methods

CO5: implement reinforcement learning in various applications

UNIT-I

Introduction and basics of reinforcement learning: The Reinforcement Learning Problem -Reinforcement Learning- Examples- Elements of Reinforcement Learning- Limitations and Scope -An extended example – History of Reinforcement Learning - Applications - Ethics in RL- Applying RL for real-world problems- Multi-Agent Reinforcement Learning

Book 1- Chapter 1

UNIT-II

Markov decision process & dynamic programming: Finite Markov Decision Processes - Dynamic Programming - Policy Evaluation - Policy Improvement - Value Iteration - Efficiency of DP Book 1- Chapter 3,

UNIT-III

Monte carlo method & planning and learning Monte Carlo Methods - Model Based Learning and Planning – Integrated Planning – Acting and Learning – Prioritized Sweeping – Heuristic Search Book 1- Chapter 5,

UNIT-IV

Psychology and Neuroscience: Prediction and control - Classical conditioning - neuroscience basics- reward and prediction

Book 1- Chapter 14,15

UNIT-IV

Applications and case studies: TD - Gammon - Samuel's Checkers Player - Personalized Web Services.

Book 1- Chapter 16

PDS 60

15 Hours

15 Hours

15 Hours

15 Hours

Learning Resources

Textbook

1.Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	1	1
CO2	3	3	2	3	2	2	2	2	1	1
CO3	3	2	3	3	3	2	1	2	1	1
CO4	3	2	3	2	2	2	1	1	1	1
CO5	2	3	2	3	1	1	2	1	1	1
Average	2.8	2.6	2.6	2.6	2	1.8	1.6	1.6	1	1

Strong – 3 Medium - 2 Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5233	Internship	IS		2

To apply theoretical and practical knowledge to design and develop a project in their chosen domain.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO 1: gain hands-on experience in a real-world professional environment.

CO 2: develop workplace skills, including teamwork, time management, and professional communication.

CO 3: gain insight into industry standards, practices, and expectations.

CO 4: apply technical skills and knowledge to solve real-world problems.

CO 5: engage in reflective learning to assess experiences and set future career goals.

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	2	2	2	2
CO2	3	3	3	3	3	3	2	2	1	1
CO3	3	3	3	3	3	3	2	1	1	1
CO4	3	3	3	3	3	3	2	1	1	1
CO5	3	3	3	3	2	2	2	2	1	1
Average	3	3	3	3	2.8	2.8	2	1.6	1.2	1.2

Strong – 3

Medium - 2 Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5402	Data visualization	Core	5	4

To explore the fundamental concepts, importance of data analysis and design the visualization.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: design and create data visualizations.

CO2: gain the knowledge about D3.

CO3: use knowledge of chart library, generate chart and animate the graphs.

CO4: apply the various operations on data source.

CO5: understand and apply principles of data visualization.

UNIT –I

Context of data visualization – Definition, Methodology, Visualization design objectives. Key Factors – Purpose, visualization function and tone, visualization design options – Data representation, Data Presentation, Seven stages of data visualization, widgets,data visualization tools. Mapping - Time series -Connections and correlations - Scatter plot maps -Trees, Hierarchies and Recursion – Networks and Graphs, Info graphics.

UNIT- II

Introduction to D3 - Fundamental Technology -Drawing with data – Scales – Axes – Updates, Transition and Motion – Interactivity - Layouts –Geomapping – Exporting- Data to create Visualizationwith SVG - SVG – Styling CSS –Shapes – SVG Properties – SVG Text -Drawing – Transformations.

UNIT- III

D3-based reusable chart library: Introduction to D3 – Setup and Deployment – Generate Chart – Customize Chart – How to Use APIs – Customize Style – Building Real time and Live Updating animated graphs with C3.

UNIT- IV

Tableau introduction: Environment Setup – Navigation – File & Data Types. DATA SOURCE: Custom Data View – Extracting Data – Fields Operations – Editing Meta Data – Data Joining – Data Blending. Worksheets

UNIT –V

Tableaue charts: Bar Chart – Line Chart – Pie Chart – Scatter Plot – Bubble Chart –Gantt Chart – Histograms - Waterfall Charts. ADVANCED: Dashboard – Formatting –Forecasting – Trend Lines

15 Hours

15 Hours

15 Hours

15 Hours

Learning Resources

Textbook

1.Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.

Reference Books

1. Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2013.

2. Ritchie S. King - Visual Storytelling with D3 – An Introduction to Data Visualization with D3,Addison-Wesley-Data Analytic Series,ISBN 10: 0321933176.

3. Elijah Meeks , D3.js in Action, Second Edition: Data visualization with JavaScript, Publisher: Manning Publications, 2017, ISBN: 9781617294488

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	2	1	1	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	2	2	1	1
CO4	3	3	3	3	2	1	1	1	1	1
CO5	3	2	2	2	1	1	2	1	1	1
Average	3	2.8	2.6	2.6	2.2	1.8	1.6	1.2	1	1

CO – PSO Mapping

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5404	Cloud computing	Core	5	4

To provide an understanding of how cloud computing evolved, its acceptance world – wide and integral part of several organization.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: explain the models, principles, and benefits of Cloud Computing

CO2: describe virtualization foundations to cater the needs of elasticity, portability and resilience by cloud service providers.

CO3: identify the applications of Cloud Computing

CO4: analyse the security aspects of Cloud Computing

CO5: discuss the importance of message passing and map reduce in Cloud Computing

Unit I

15 Hours

Introduction to Cloud Computing: Introduction – History – Fundamentals of Cloud Computing – Characteristics – Advantages and Disadvantages – Comparison of Traditional and Cloud Computing paradigms – Evaluating the impact and economics - Business Drivers – Future of Cloud.

Unit II

15 Hours

Cloud Computing Architecture: Cloude computing architecture – Design principle – Life cycle(CCLC) – Reference architecture – Load balancing approach – Mobile cloud computing(MCC) – Case study of oracle cloud management

Unit III

Service Oriented Architecture: Objectives - SOA foundation - Web services and SOA - SOA communication - SOA components - SOA Infrastructure - Need of SOA - Business Process Management (BPM) – Services of BPM Cloud Computing Applications: Introduction – Google App Engine – Google Apps – Google

Cloud – Data Store - Dropbox Cloud – Apple iCloud – Microsoft Windows Azure Cloud – Amazon Web Services(AWS)

Unit IV

15 Hours

Cloud Security and Privacy: Cloud Security – Cloud CIA security model – Cloud Computing Security Architecture – Service provideder security issues – Data Security in cloud – Data privacy risks –Cloud service level agreements(SLA): Components – Types – Cloud Vendors – Quality of Cloud Services – Techniques – Migration – Trust management.

Unit V

15 Hours

Cloud Computing Technologies: Cloud Computing Technologies - High performance Computing - Message Passing Interface(MPI) - MapReduce programming model -Dryad and Dryad LINQ -Eucalyptus cloud platform: Components. Adoption of Cloud Computing: Factors affecting the adoption - Existing areas of application - Case studies -Certifications.

Learning Resources

Textbook

1.Kant Hiran, Kamal, Ruchi Doshi, Temitayo Fagbola, Mehul Mahrishi, Cloud Computing: Master the Concepts, Architecture and Applications with Real-world examples and Case studies, BPB Publishers, 2019

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	2	2	1	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	3	3	2	2	2	1	1
CO4	3	3	2	2	2	2	2	2	1	1
CO5	2	2	3	3	1	1	2	1	1	1
Average	2.8	2.8	2.6	2.6	2.2	2	1.8	1.6	1	1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5406	Deep learning	Core	5	4

To provide fundamental knowledge of neural networks and deep learning

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: describe the concepts simulating human brain.

CO2: inspect the Supervised Learning Networks.

CO3: explain the essentials of Convolution Neural Network and Network architectures.

CO4: define, train and use a Deep Neural Network for solving real world problems that require artificial Intelligence based solutions.

CO5: discuss deep learning in various applications

UNIT-I

Introduction to Artificial Neural Networks: Neural Networks-Application Scope of Neural Networks- Fundamental Concept of ANN: The Artificial Neural Network-Biological Neural Network-Comparison between Biological Neuron and Artificial Neuron-Evolution of Neural Network. Basic models of ANN-Learning Methods-Activation Functions-Importance Terminologies of ANN.

UNIT-II

Supervised Learning Network: Perceptron Networks-Theory-Perceptron Learning ruleArchitecture-Flowchart for training Process-Perceptron Training Algorithm for Single and Multiple Output Classes. Back Propagation Network- Theory-Architecture-Flowchart for training process -Training Algorithm-Learning Factors for Back-Propagation Network. Radial Basis Function Network RBFN: Theory, Architecture, Flowchart and Algorithm.

UNIT-III

Convolutional Neural Network:Introduction - Components of CNN Architecture - Rectified Linear Unit (ReLU) Layer - Exponential Linear Unit (ELU, or SELU) - Unique Properties of CNN - Architectures of CNN - Applications of CNN.

UNIT-IV

Recurrent Neural Network: Introduction- The Architecture of Recurrent Neural Network- The Challenges of Training Recurrent Networks- Echo-State Networks- Long Short-Term Memory (LSTM) - Applications of RNN.

15Hours

15Hours

15Hours

UNIT-V

15Hours

Auto Encoder and Restricted Boltzmann Machine: Introduction - Features of Auto encoder Types of Autoencoder Restricted Boltzmann Machine- Boltzmann Machine - RBM Architecture -Example - Types of RBM

Learning Resources

Text Books

1.S.N.Sivanandam, S. N. Deepa, Principles of Soft Computing, Wiley-India, 3rd Edition, 2018.
2.Dr. S Lovelyn Rose, Dr. L Ashok Kumar, Dr. D Karthika Renuka, Deep Learning using Python, Wiley-India, 1st Edition, 2019.

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	1	1
CO2	3	3	2	3	2	2	2	2	1	1
CO3	3	2	3	3	3	2	1	2	1	1
CO4	3	2	3	2	2	2	1	1	1	1
CO5	2	3	2	3	1	1	2	1	1	1
Average	2.8	2.6	2.6	2.6	2	1.8	1.6	1.6	1	1

Strong – 3 Medium - 2 Low -1

		PD:

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5302	Deep learning lab	Core	4	3

To acquire knowledge on the basics of neural networks using computational tools for variety of problems and to explore various deep learning algorithms.

Course Outcomes:

Students will be able to:

CO1: develop algorithms simulating human brain.

CO2: implement Neural Networks in Tensor Flow for solving problems.

CO3:explore the essentials of Deep Learning and Deep Network architectures.

CO4:define, train and use a Deep Neural Network for solving real world problems GAN

CO5: implement deep learning in Transfer Learning

UNIT –I

Image Classification

- Experiment using peceptron
- Use a deep learning framework to train a Convolutional Neural Network on the MNIST dataset.
- Implement data augumentation techniques(eg. Rotation, flipping) to increase the size of the training set

• Experiment with different architectures (eg. AlexNet, ResNet) and hyperparameters (eg. Learning rate, batch size)

UNIT – II

Natural Language Processing

• Use a deep learning framework to train a recurrent neural network (RNN) on a text classification task (e.g. sentiment analysis).

• Implement word embeddings (e.g. Word2Vec, GloVe) to convert text data into numerical representations.

• Experiment with different architectures (e.g. LSTM, GRU) and hyperparameters (e.g. sequence length, embedding size).

UNIT – III

Object Detection

- Use a deep learning framework to train a CNN on an object detection task (e.g. COCO dataset).
- Implement techniques for bounding box regression and non-maximum supprmession.

12 Hours

12 Hours

• Experiment with different architectures (e.g. YOLO, SSD) and hyperparameters (e.g. anchor box sizes, confidence threshold).

UNIT - IV

Generative Adversarial Networks

- Use a deep learning framework to train a GAN on an image generation task (e.g. generating faces).
- Implement techniques for training GANs (e.g. batch normalization, Adam optimizer).
- Experiment with different architectures (e.g. DCGAN, WGAN) and hyperparameters (e.g. learning rate, batch size).

UNIT – V

Transfer Learning

• Use a pre-trained deep learning model (e.g. VGG16, ResNet50) and fine-tune it on a new task (e.g. image classification on a different dataset).

• Experiment with different architectures and hyperparameters (e.g. learning rate, number of fine-tuned layers).

Learning Resources

Text Book

1.Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning" MIT Press, 2016

2. Francois Chollet, "Deep Learning with Python", Manning Publications, 2017.

3. Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow", O'Reilly Media, 2019.

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	2	2	2	1	2	1
CO2	3	3	2	2	2	2	1	1	1	1
CO3	3	3	3	2	3	2	1	2	1	1
CO4	3	2	2	2	2	2	1	1	1	1
CO5	2	2	2	2	1	1	2	1	1	1
Average	2.8	2.4	2.4	2.2	2	1.8	1.4	1.2	1.2	1

Strong – 3 Medium - 2 Low -1

12 Hours

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5502	Project	CORE	6	5

To Apply theoretical and practical knowledge to design and develop a project in their chosen domain.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO 1: gain hands-on experience in a real-world professional environment.

CO 2: develop workplace skills, including teamwork, time management, and professional communication.

CO 3: gain insight into industry standards, practices, and expectations.

CO 4: apply technical skills and knowledge to solve real-world problems.

CO 5: engage in reflective learning to assess experiences and set future career goals.

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	2	2	2	2
CO2	3	3	3	3	3	3	2	2	1	1
CO3	3	3	3	3	3	3	2	1	1	1
CO4	3	3	3	3	3	3	2	1	1	1
CO5	3	3	3	3	2	2	2	2	1	1
Average	3	3	3	3	2.8	2.8	2	1.6	1.2	1.2

Strong – 3 Medium - 2

Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5304	Web analytics	DSE	5	3

To impart the fundamental knowledge of web analytics which are essential in business world.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO1: examine the basic concepts of Web Analytics

CO2: describe the Data methods for Web Analytics

CO3: identify the web analytics strategies and webanalytics tools

CO4: analyse the Web intelligence to improve the outcomes of business plan

CO5: design and implement search log analytics process a make a business decision making.

Unit I

Introduction: The foundation of web analytics Theory and methods : Introduction-Behaviorism-Behaviors-Trace Data-Unobtrusive methods-Web analytics as Unobtrusive methods-The history of Web Analytics:Single web sities-Library Systems-Search Engines

Unit II

Data Collection for Web Analytics: Web server log files-page tagging-Visitor Type-Visit length-Demographic and system statistics-Internal search-Visitor path-Top pages-Referres and knowledge Analysis-

Unit III

Web analytics Strategies: Performance indicator-Web Analytics process-Identify key stake holders-Define goal for web site- Identify the most important site visitor-Determine the key performance Indicators-Identify and implement the solution-Use multiple technologies and methods-Makes improvement iteratively-Hire and empower a full time Analysist-Choosing a web Analytics tool

Unit IV

Web Analytics as Intelligence: Determining a key performance-Commerce-Lead Generation-Content/Media-Support/Self Service- Supplementary methods for Augmenting web analytics-Review of appropriate Survey Literature- Planning and conducting survey-Design a survey instrument.

Unit V

Search log Analytics: Introduction-Review of search log analytics-Search log Analysis Process- Data Analysis

15 Hours

15 Hours

15 Hours

15 Hours
Learning Resources

Textbook

1.Bernard J. Jansen, "Understanding User-Web Interactions via Web analytics", Morgan and Claypool, 2009.

Reference Books

- 1. Brian Clifton, "Advanced web metrics with Google analytics", John Wiley & Sons, 2012.
- 2. Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, "Google Analytics", John Wiley & Sons, 2013.
- 3 Avinash Kaushik, "Web Analytics2.0", John Wiley & Sons, 2010.

CO – PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	2	1	1	1
CO2	3	3	2	3	2	2	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1
CO4	3	3	3	2	2	1	1	1	1	1
CO5	3	2	2	2	1	1	2	1	1	1
Average	3	2.8	2.6	2.6	2.2	1.6	1.6	1	1	1

Strong – 3 Medium - 2 Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5306	Social media analytics	DSE	5	3

This course aims to foundation of social media analytics and deal with any social media network strategy or campaign and learn to integrate social media analytics with other areas of business.

Course Outcomes

CO1: explain the data in social media and its various forms.

CO2: different types of social media analytics tools that draw data from different sources, are based in different search patterns, and also deliver different results

CO3: describe the Metrics as a part of tactics and applying metrics towards strategic goals and learn to repeat such tactics when successful

CO4: defining what strategy is, its elements, and learn the niceties on how to build a good analytics strategy.

CO5: applications of Social Media Analytics and its future.

Unit I

15 Hours

15 Hours

Social Media Data : A look into the evolution of Data and the Digital Gap – Social Media Data Sources – Offline and Online – Defining Social Media Data – Data Sources in Social Media Channels – Estimated Vs Factual Data Sources – Public and Private Data – Data gathering in Social Media Analytics – API – Web Crawling or Scraping. From Data to Insights - Shaping data to work for us – Creating a plan to shape Data into insights.

Unit II

Analytics in Social Media and Types of Analytic Tools: Defining Analytics in Social Media as a Broad Term – Types of Analytics in Social Media - Analytics, Listening, Advertising Analytics -The Analytics Process - Elements to shape data insights – Analysis is Comparison – Shaping method – Analysis Cycle – Community activity – Resources – Attention span for reports – Dynamic cycles – short and long periods – Understand the audience – case study.

Unit III

Metrics, Dashboards and Reports Metrics: Default and Custom metrics – Metric Categories – Divide and conquer – Metric Capabilities – examples – Metrics and Strategy – Estimated Metrics – Given by the social networks – calculated by third party technology – Metrics and Tactics -Dashboards – purpose – defining objectives – example – default vs custom dash boards – Linearity and order of Metrics – Reports - Elements of Reporting - Good Qualities for Each Element of Reporting - Elements in Chain - Reporting Approaches.

15 Hours

Unit IV

Strategy **and** Tactics: Success Strategy in Social Analytics - Strategic Planning in Social Media Analytics - Data Availability and Data Sources - Knowledge beyond Social Media - Tools and Technology Preparation - Team Preparation Goals and Objectives - Reporting Cycles and Timelines - Contingency Plans - Application of a Social Media Analytics Strategy - Evaluation of a Strategic Analytics Cycle - Detecting a Hidden Strategy - Building a Good Social Analytics Strategy - Tactics - Practical Elements to Include in Social Analytics – Strategies - Goals and success rates - Competitive bench marking – Discovery - Case study.

Unit V

15 Hours

15 Hours

The Future : The Final Stage for Analytics Applications - Three Stages of Analytics - Descriptive Analytics Predictive Analytics - Prescriptive Analytics - Competitive Advantage as a Goal - Prescriptive Analytics - The Future of Social Media Analytics .

Learning Resources

Reference Books

1. Social Media Analytics Strategy, Alex Gonclaves, 2017, Apress

2. Social Media Analytics, Marshall Sponder, 2012, The Mc-Graw-Hill Publisher.

3. Social Media Analytics, Mathew Ganis – Avinash Kohirkar, IBM Press.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	2	1	1	1
CO2	3	3	2	3	2	2	1	1	1	1
CO3	3	3	2	3	3	2	2	1	1	1
CO4	3	3	3	2	2	1	1	1	1	1
CO5	3	2	2	2	1	1	2	1	1	1
Average	3	2.8	2.4	2.6	2.2	1.6	1.6	1	1	1

CO – PSO Mapping

Strong – 3 Medium - 2

Low -1

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS5244	Professional competency skill	SEC	-	2

To Apply theoretical and practical knowledge to design and develop a project in their chosen domain.

Course Outcomes:

On the successful completion of the course, Students will be able to

CO 1: enhance problem-solving skills through rigorous practice of quantitative, logical reasoning, and verbal ability questions.

CO 2: improve time management skills to efficiently allocate time during the exam and maximize performance.

CO 3: develop the ability to work collaboratively in multidisciplinary teams, integrating data science expertise with domain-specific

CO 4: cultivate strong communication skills to articulate data insights and recommendations to diverse audiences, including technical and non-technical stakeholders.

CO 5: engage in continuous self-assessment and feedback to identify strengths and areas for improvement, setting clear goals for success.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	2	2	2	2
CO2	3	3	3	3	3	3	2	2	1	1
CO3	3	3	3	3	3	3	2	1	1	1
CO4	3	3	3	3	3	3	2	1	1	1
CO5	3	3	3	3	2	2	2	2	1	1
Average	3	3	3	3	2.8	2.8	2	1.6	1.2	1.2

CO – PO Mapping

Strong – 3 Medium - 2 Low -1

Value Added Course

Sem	Category	Course Code	Course Title	Hours/ Wk.	Credits	Marks
2	VAC	24PDS422V	Metaheuristic Algorithms	2	2	30
3	VAC	24PDS521V	Microsoft Power BI	2	2	30

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS422V	Metaheuristic Algorithms	VAC	2	2

Objective:

The course is intended to provide an introduction to algorithms and nature inspired algorithms.

Course Outcomes:

CO 1: describe the fundamental principles and goals of metaheuristic algorithms for optimization.

CO 2: interpret Image Segmentation methods

CO 3: apply metaheuristic algorithms to perform edge-based and region-based image segmentation.

CO 4: analyze and interpret the results of multilevel thresholding based on metaheuristic algorithms for image segmentation.

CO 5: compare and contrast the strengths and limitations of different clustering methods in the context of image segmentation

Unit I

Introduction – Metaheuristic Algorithms for Optimization – Image Segmentation – Optimization – Gradient Based Optimization – Other Classical Approaches.

Unit – II

Image Segmentation Using Metaheuristics – Edge Based Image Segmentation – Region Based Image Segmentation – Data Clustering – Based Image Segmentation – Comparison between the Traditional **Image Segmentation Methods**

Unit – III

Multilevel Thresholding for Image Segmentation Based on Methaheuristic Algorithms – Multilevel Thresholding - Metaheuristic Algorithms for Segmentation (Cuckoo Search Algorithm, Bat Algorithm, Ariticial Bee Colony, Firefly Algorithm, Social – spider Algorithm, Whale Optimization Algorithm, Moth Flame Optimization, Grey Wolf Optimization, Partical Swarm Optimization).

Unit- IV

Image Segmentation using Kapur's Entropy and a Hybrid Optimization Algorithm - Background -Proposed Approach – Experimental and Results.

Unit – V

Introduction - Clustering methods for Image Segmentation (Hierarchical Clustering, Partitional Clustering, K- Means Clustering, Fuzzy Clustering)

Learning Resource

Text Book

1. Diego Oliva, Mohamed Abd Elaziz, Salvador Hinojosa, "Metaheuristics algorithms for Image Segmentation : Theory and Applications", Springer.

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	2	2	2	2	2	2
CO2	3	2	2	3	3	2	2	2	1	1
CO3	3	3	3	3	3	2	2	2	1	1
CO4	3	2	2	3	3	2	2	1	1	1
CO5	3	2	3	3	2	2	2	2	1	1
Average	3	2.4	2.4	3	2.6	2	2	1.8	1.2	1.2

CO – PO Mapping

Course Code	Name of the Course	Category	Hours/Wk.	Credits
24PDS521V	Microsoft power BI	VAC	2	2
Ohiastiwas				

Objective:

The course is intended to Learn to integrate Power BI with other Microsoft tools, such as Excel and SharePoint, for seamless data analysis and collaboration

Course Outcomes:

CO 1: describe the various options of PowerBI and to generate the report.

CO 2: design various dashboards in workspace.

CO 3: formulate the PowerBI architechture and Publishing methods

CO 4: learn to connect the Database and loading from multiple sources.

CO 5: assess and integrate the Power BI in various platforms.

Unit I

Introducing POWER BI: Getting started with Power BI - Uploading data to Power BI -

Introducing to natural language queries – Introduction to reports – Introducing Visual Interactions –

Decorating the Report – Saving the Report – Pinning the report.

Unit II

Sharing the Dashboard : Creating a group workspace in Power BI - Viewing Reports and Dashboards on mobile devices.

Unit III

Understanding Data Refresh: Introducing data refresh – Introducing the Power BI refresh architecture - Introducing Power BI Desktop - Publishing to Power BI.

Unit IV

Using PowerBI Desktop: Connecting to database – Loading from multiple sources – Using Query Editor – Hiding or removing tables – Handling seasonality and sorting months.

Unit V

Getting data from services and content packs : Cosuming a service content pack – Creating a custom dataset from a service. Creating a content pack for your organization – Consuming an Orgaizational Content Pack – Updating an Organizational Content Pack.

Learning Resources

Text Books

1. Alberto Ferrari and Marco Russo, "Introducing Microsoft Power BI", Microsoft Corporation, 2016.

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

References Books

1. Holden, "Guide to firewalls and Network security", Vijay Nicole Publications, 2005

2. Christopher M King, Curtis E. Dalton, T.Ertem Osmanoglu, "Security Architecture Design, Deployment & Operations", Osborne/McGraw-Hill,2001

CO – PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	2	2	2	2	2	2
CO2	3	3	2	3	3	2	2	2	1	1
CO3	3	3	2	3	2	2	2	1	1	1
CO4	3	2	2	3	3	2	2	1	1	1
CO5	3	3	3	3	2	2	2	2	1	1
Average	3	2.8	2.2	3	2.4	2	2	1.6	1.2	1.2

Strong – 3 Medium - 2 Low -1